空间分析

《区域水环境污染数据分析实践》
Data analysis practice of regional water environment pollution

苏命、王为东
中国科学院大学资源与环境学院
中国科学院生态环境研究中心

2025-04-09

目录

  1. 空间数据基础概念
  2. Simple Features (SF) 核心规范
  3. SFEXT扩展功能实战
  4. 空间关系与几何操作
  5. 空间统计分析方法
  6. 综合实战案例

1. 空间数据基础概念

空间数据类型体系

library(sf)
# 创建示例几何类型
st_point(c(0, 0)) # 点
st_linestring(rbind(c(0, 0), c(1, 1))) # 线
st_polygon(list(rbind(c(0, 0), c(1, 0), c(1, 1), c(0, 0)))) # 面

坐标参考系(CRS)

# 常用坐标系定义
wgs84 <- st_crs(4326) # 经纬度坐标
utm50n <- st_crs(32650) # UTM 50N投影
cat(st_crs(wgs84)$proj4string)

2. Simple Features (SF) 核心规范

创建SF对象

# 从数据框转换
df <- data.frame(
  city = c("Beijing", "Shanghai"),
  pop = c(2171, 2424),
  geometry = st_sfc(
    st_point(c(116.4, 39.9)),
    st_point(c(121.5, 31.2))
  )
)
sf_df <- st_as_sf(df, crs = 4326)

数据IO操作

# 写入/读取空间文件
st_write(sf_df, "cities.shp")
new_sf <- st_read("cities.shp")

# 从内置数据集加载
nc <- st_read(system.file("shape/nc.shp", package = "sf"))

3. SFEXT扩展功能实战

高级几何生成

remotes::install_github("r-spatial/sfext")
library(sfext)

# 生成渔网网格
grid <- st_regular_grid(
  xmin = 0,
  ymin = 0,
  xmax = 100,
  ymax = 100,
  cell_size = 10
)
plot(grid)

空间索引加速

# 创建空间索引
system.time(
  without_idx <- st_intersects(nc, nc)
)

system.time(
  with_idx <- st_intersects(st_make_valid(nc), sparse = TRUE)
)

4. 空间关系与操作

拓扑关系判断

p1 <- st_point(c(0, 0))
p2 <- st_point(c(1, 1))
st_distance(p1, p2) # 距离计算

poly <- st_polygon(list(rbind(c(0, 0), c(1, 0), c(1, 1), c(0, 0))))
st_contains(poly, p1) # 包含关系

几何变换操作

# 缓冲区分析
buf <- st_buffer(nc[1, ], dist = 0.1)
plot(buf)
plot(nc[1, ]$geometry, add = TRUE, col = 'red')

# 凸包计算
convex <- st_convex_hull(nc)
plot(convex)

5. 空间统计分析方法

点模式分析

library(spatstat)
# 创建点模式对象
ppp <- ppp(x = runif(100), y = runif(100), window = owin(c(0, 1), c(0, 1)))

# K函数分析
K <- Kest(ppp)
plot(K, main = "Ripley's K函数")

空间自相关检验

library(spdep)
# Moran's I检验
nb <- poly2nb(nc)
lw <- nb2listw(nb)
moran.test(nc$BIR74, lw)

6. 综合实战案例

城市公园服务区分析

library(osmdata)
library(sfnetworks)

# 获取OSM数据
parks <- opq("New York") %>%
  add_osm_feature("leisure", "park") %>%
  osmdata_sf()

roads <- opq("New York") %>%
  add_osm_feature("highway") %>%
  osmdata_sf()

# 构建网络分析
net <- as_sfnetwork(roads$osm_lines) %>%
  st_transform(32618)

# 计算服务范围(示例)
service_area <- st_network_blend(net, parks$osm_polygons) %>%
  st_buffer(500) # 500米服务区

可视化增强技巧

分层绘图

library(ggplot2)
ggplot() +
  geom_sf(data = nc, aes(fill = BIR74)) +
  geom_sf(data = service_area, alpha = 0.3) +
  scale_fill_viridis_c() +
  theme_minimal()

交互可视化

library(mapview)
mapview(nc, zcol = "BIR74", burst = TRUE) +
  mapview(service_area, alpha.regions = 0.2)

实践案例

中国地图

library(tidyverse)
library(sf)

# 更稳定的预处理数据源(含港澳台)
# china <- st_read("https://geo.datav.aliyun.com/areas_v3/bound/100000.json")

china <- st_read("./中华人民共和国.json", quiet = TRUE)

library(ggplot2)

ggplot(china) +
  geom_sf(fill = "#F6F6F6", color = "#666666", size = 0.3) +
  theme_void() +
  labs(title = "China")

# 添加模拟经济数据(实际应用可连接统计年鉴)
set.seed(123)
china$gdp <- runif(nrow(china), 100, 1000) # 模拟GDP数据(亿元)

china |>
  ggplot() +
  geom_sf(aes(fill = gdp), color = "gray90", size = 0.2) +
  scale_fill_gradientn(
    colours = c("#2c7bb6", "#abd9e9", "#ffffbf", "#fdae61", "#d7191c"),
    name = NULL
  ) +
  theme_void() +
  theme(legend.position = c(0.85, 0.3))

Kriging

require(sf)
require(sp)
require(gstat)
require(raster)
require(ggplot2)
# 读取太湖边界
lake_boundary <- st_read("../../data/taihu.shp") |>
  sf::st_make_valid()
main_water <- st_difference(
  lake_boundary[lake_boundary$Name == "boundary", ],
  st_union(lake_boundary[lake_boundary$Name != "boundary", ])
)

get_kriging <- function(indf, Yvarname, grid = NULL, boundsf = main_water) {
  insf <- indf |>
    sfext::df_to_sf(crs = 4326, coords = c("long", "lat")) |>
    dplyr::select(-c("long", "lat")) |>
    dplyr::rename(Y = tidyselect::all_of(Yvarname))
  if (is.null(grid)) {
    # 1. 将sf边界转为terra格式
    v <- terra::vect(boundsf)
    # 2. 创建基础网格
    base_grid <- terra::rast(v, resolution = 0.002) # 基础低分辨率
    # 3. 创建高分辨率区域(例如边界附近)
    buffer_zone <- buffer(v, width = 0.005) # 边界附近创建缓冲区
    hi_res_grid <- terra::rast(buffer_zone, resolution = 0.001)
    # 4. 合并网格
    final_grid <- merge(base_grid, hi_res_grid)
    # 5. 转为点并裁剪
    grid <- terra::as.points(final_grid) |>
      sf::st_as_sf() |>
      sf::st_filter(main_water)
  }
  insp <- sf::as_Spatial(insf)
  fit <- automap::autofitVariogram(Y ~ 1, insp)
  # 克里金插值
  m <- gstat::gstat(
    formula = Y ~ 1,
    data = insp,
    model = fit$var_model
  )
  predsf <- predict(m, grid) |>
    sf::st_as_sf()
  outsf <- predsf |>
    st_coordinates() |>
    as.data.frame() |>
    cbind(pred = predsf$var1.pred)
  return(outsf)
}


wqdf <- readxl::read_xlsx("../../data/wqdata.xlsx")

if (FALSE) {
  wqsf <- wqdf |>
    nest(datedf = -date) |>
    dplyr::mutate(
      krigingsf = purrr::map(datedf, \(x) {
        get_kriging(x, "conc", boundsf = main_water)
      })
    )
  saveRDS(wqsf, "./wqsf.rds")
}
wqsf <- readRDS("./wqsf.rds")

wqsf |>
  unnest(krigingsf) |>
  ggplot(aes(X, Y)) +
  geom_contour_filled(aes(z = pred), bins = 20) +
  geom_sf(
    data = main_water,
    aes(x = NULL, y = NULL),
    fill = NA,
    colour = "black",
    linewidth = 1
  ) +
  # scale_fill_gradientn(colors = hcl.colors(100, "RdYlBu")) + # 设置颜色渐变
  # ggsci::scale_fill_aaas() +
  coord_sf() +
  theme_void()

学习资源

  1. SF官方文档:https://r-spatial.github.io/sf/
  2. 《Geocomputation with R》在线书
  3. R-spatial教程:https://github.com/r-spatial/workshops

### 使用说明:
1. 需要R 4.0+环境
2. 推荐安装依赖:
   ```r
   install.packages(c("sf", "spatstat", "spdep", "osmdata", "sfnetworks", "ggplot2", "mapview"))
   remotes::install_github("r-spatial/sfext")
  1. 实际案例数据可替换为本地shapefile
  2. 交互可视化部分需要浏览器支持

欢迎讨论!

苏命|https://drwater.net; https://drwater.net/team/ming-su/; Slides