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Abstract

2-Methylisoborneol (MIB), a potent cyanobacterial metabolite, impairs drinking water quality
through taste-and-odor issues at trace concentrations. Despite its significant impact, the intra-
cellular dynamics and environmental release mechanisms of MIB remain poorly characterized.
We developed a mechanistic model of growth-phase dependent MIB release through controlled
experiments with two producer strains. The model reveals that the extracellular MIB proportion
(f = ewis/tmis) follows a consistent pattern: decreasing to a minimum at mid-log phase before
rising and stabilizing (f: 0.4 to 0.6) during stationary phase, suggesting crowding-induced cell ly-
sis drives release dynamics. Application of the model to Lake Taihu successfully reconstructed
two odor events during 2022-2023, elucidating both the spatiotemporal development of MIB
producers and identifying critical risk thresholds at ~15°C and >30°C under moderate light (0.1-
0.4 mol m2 d!) - patterns undetectable by conventional monitoring. Our findings demonstrate
that physiological transitions, rather than just biomass accumulation, control odorant release.
This framework may extend to other algal metabolites (e.g., geosmin, cyanotoxins), offering
broader predictive capability. By linking cellular processes to water quality risks, our approach
enables proactive management of cyanobacterial contaminants, informing both early warning
systems and operational guidance for oxidant-type optimization to prevent large-scale release
of hazardous compounds from algal cells.

Keywords
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I Introduction

The issue of taste and odor (T&O) in drinking water sources is a major water quality concern,
with earthy-musty odors caused by 2-methylisoborneol (MIB) being one of the most problematic
problems [1-3]. MIB, an odorous terpenoid derivative, poses a persistent challenge in drink-
ing water due to its extremely low odor threshold concentration (OTC) of 4 - 16 ng L! and its
resistance to conventional water treatment processes [4-12]. This compound is produced by
various microorganisms, including actinomycetes [13, 14], cyanobacteria [15], fungi [16], and
myxobacteria [17]. However, in drinking water sources, filamentous cyanobacteria—such as
Pseudanabaena, Planktothrix, Phormidium, Oscillatoria, Lyngbya, and Planktothricoides—are
the primary producers [18-23]. Unlike typical bloom-forming algae, MIB-producing cyanobacte-
ria can thrive under moderate nutrient levels, intermediate light intensity, and temperatures of
20-30°C, allowing them to grow even when conventional bloom species remain limited [24-28].

Following biosynthesis, MIB is primarily distributed inside the cells as intracellular MIB (iyg) or
cell-bound MIB [29, 30]. It is then transported to the extracellular environment via cell mem-
brane transporters, forming extracellular MIB (ey,g). Additionally, MIB release can occur during
cell wall rupture or lysis upon cell death [31, 32].

The distribution of MIB between intracellular and extracellular compartments has significant
implications for drinking water treatment. If most MIB is already released into the water, ad-
vanced treatment processes such as ozone-activated carbon adsorption are required for its re-
moval. Conversely, if MIB remains predominantly intracellular, conventional coagulation and
sedimentation processes can effectively remove algal cells, or oxidants that minimize cell dam-
age can be employed to prevent MIB release. Current monitoring practices in water treatment
plants typically measure total MIB (ty,g) without distinguishing between intracellular and extra-
cellular fractions, limiting their utility in guiding treatment process selection. Previous studies
have largely overlooked the intracellular and extracellular distribution of MIB, with most mod-
els focusing on its degradation kinetics and removal processes [33-36]. While some research
has highlighted the surge in extracellular MIB during the senescent phase, attributing it to the
rupture of algal filaments, the detailed relationship between extracellular MIB fluctuations and
the growth cycle remains inadequately explored [37]. To date, no study has comprehensively
described the trends in intracellular and extracellular MIB distribution or provided a thorough
explanation for these changes.

Our observations from culture experiments suggest that the intracellular and extracellular
distribution of MIB is not constant and may be influenced by its biosynthesis and release
mechanisms [32, 37-39]. The biosynthetic pathway of MIB in cyanobacteria involves the
methylation of geranyl diphosphate (GPP), followed by cyclization of methyl-GPP, catalyzed by
2-methylisoborneol synthase (2-MIBS) within the Sg Enc protein shell. Recent structural studies
have revealed that the Sg Enc protein is a Family 2B encapsulin shell that self-assembles into
an icosahedral nanocompartment, encapsulating 2-MIBS. [40-43]. However, due to the lack of
observable pores in the Sg Enc shell and the challenges in directly tracking MIB migration, the
mechanisms governing its release and distribution remain poorly understood.

MIB production in cyanobacteria is highly variable and influenced by environmental stressors



[25, 37]. While total MIB concentrations typically peak during the log growth phase and decline
during the stationary phase, some studies report a negative correlation between MIB produc-
tion and cell growth rates. For instance, Pseudanabaena sp. accumulates higher intracellular
MIB and releases more extracellular MIB under suboptimal temperature and light conditions
[32, 44, 45]. One hypothesis suggests that cyanobacteria may increase extracellular MIB release
under stress to inhibit competing algal species, thereby maintaining ecological dominance [45].
Alternatively, extracellular MIB may simply result from cell damage or death under adverse con-
ditions [32, 46].

In high-cell-density environments, crowding effects can restrict cell proliferation, migration,
and metabolism, impacting growth and death dynamics [47-50]. Crowding-induced growth
limitation arises from resource competition, spatial constraints, and cell cycle arrest [51, 52],
while cell death may result from programmed cell death, metabolic stress, mechanical damage,
or cell-to-cell interactions [53-55]. These effects indirectly influence the release of intracellular
metabolites such as MIB.

The Logistic growth model effectively describes cyanobacterial population dynamics under
crowding effects, incorporating intrinsic growth rate (r) and carrying capacity (K) to capture
growth deceleration and inflection points [56-58]. This model is particularly useful for analyz-
ing shifts in metabolic activity and the timing of metabolite release, making it well-suited for
studying MIB dynamics [59, 60].

Based on these observations, we hypothesize that the ratio of ey g to tys (f) is not constant
but varies predictably over time in response to cell crowding. To test this, we developed a
mechanistic model describing the temporal variation of f using culture experiments with typi-
cal MIB-producing strains. The goals of this work are (i) to explain MIB release patterns during
cell growth, (ii) to assess growth-stage distributions of odor-producing cyanobacteria in Taihu
Lake and predict odor risk during MIB outbreaks, and (iii) to provide new insights into MIB re-
lease dynamics, enhance understanding of cyanobacterial odor production, and offer practical
guidance for water treatment process selection and bloom management.

2 Materials and Methods

2.1 Study Area and Sampling

Lake Taihu (30°55’40”-31°32°58” N, 119°52’32”-120°36’10” E), located in the southeastern
Yangtze River Delta, is China’s third-largest shallow freshwater lake, with a surface area of
2,578 km?. The Taihu Lake watershed sustains a densely populated region of over 68 million
people (2023 Bulletin on Water Resources in the Taihu Basin and Southeastern Rivers). The
lake serves as a critical drinking water source for approximately 17 million residents, including
about 20% of Shanghai’s population. Since 2016, the newly constructed Jinze Reservoir has
been supplying drinking water sourced from eastern Lake Taihu via the Taipu River. It is also
extensively used for irrigation and aquaculture, making water quality a vital concern for local
ecosystems and livelihoods. Considering the more widespread occurrence of MIB-related odor
issues, and the fact that Lake Taihu serves as a major drinking water source, both MIB and GSM



have been routinely monitored. However, as GSM concentrations have consistently remained
low while MIB has shown an increasing trend, MIB was selected as the primary focus of this
study.

From March 2022 to February 2023, monthly water samples were collected from 31 sampling
sites distributed across the lake (Fig. S1). Given the lake’s average depth of ~2 m and well-mixed
conditions, surface water samples (2 L) were collected from 0.5 m below the water surface using
a Kemmerer water sampler. The water samples were sealed in brown narrow-mouth sampling
bottles and taken to the laboratory for pretreatment within four hours.

2.2 Physicochemical Analysis and Phytoplankton Enumeration

In situ measurements of physicochemical parameters—including water temperature, pH,
dissolved oxygen (DO), turbidity, and conductivity—were conducted using a multiparameter
probe (EXO2, USA). Water transparency was quantified via Secchi depth (SD) measurements
using a 20 cm diameter Secchi disk. Nutrient concentrations (nitrate, nitrite, ammonia, total
nitrogen [TN], and total phosphorus [TP]) were analyzed following Chinese national standard
methods(Ministry of Environmental Protection of PRC 2007, 2009, 2012, 2013).

For odorant analysis, subsamples (100 mL) were collected in amber glass bottles with airtight
seals and preserved with 10 mg L HgCl, to inhibit biodegradation [61]. Total MIB production
potential was determined by measuring its concentration within 72 hours using solid-phase
microextraction (SPME) coupled with gas chromatography-mass spectrometry (GC-MS; Agilent
7890, USA) equipped with an Agilent VF-624ms column (USA), following established protocols
[19, 35, 62].

For phytoplankton enumeration, subsamples (1000 mL) were fixed with 5% Lugol’s iodine so-
lution [63], settled for 48 hours, and pre-concentrated 20-fold before analysis. Cyanobacterial
species were identified based on morphological criteria [64], with taxonomic revisions follow-
ing ref [65]. Cell counts were performed using an upright microscope (Olympus BX53, Japan)
following the Utermohl method [66].

2.3 Model Development

The model was constructed on a Lenovo ThinkStation workstation (P350) running a Linux-based
RStudio Server environment. The logistic growth model was applied to describe changes in cell
density of cultured strains (Eq. 1):




Here, K represents the environmental carrying capacity (maximum achievable cell density), N,
is the initial cell density (t = 0), r is the intrinsic growth rate (maximum growth rate under ideal
conditions) [58, 60], and 8 denotes the initial growth potential. The Logistic model is based on
the following key assumptions: (1) the algal population is considered a closed system, with no
significant immigration or emigration; (2) external environmental conditions, such as nutrients,
light, and temperature, remain relatively stable over the modeling period, or their effects are
incorporated into the parameters; (3) biological processes, including predation, viral lysis, or
other factors causing abrupt population declines, are assumed negligible; (4) the population is
treated as homogeneous, with interspecies competition and internal physiological differences
excluded.

In aquatic systems, MIB exists in two forms: intracellular (i g) and extracellular (eyg), with their
sum constituting total MIB (tyg). The ratio f (ewg/twis) Serves as an odor index, reflecting the
proportion of dissolved MIB over total MIB.

The odor-producing cyanobacterial strains Pseudanabaena cinerea FACHB 1277 (obtained from
the Freshwater Algae Culture Collection at the Institute of Hydrobiology) and Planktothricoides
raciborskii (isolated from the FH Reservoir in Zhuhai, China [25]) and maintained in BG-11
medium. Cultures were grown under controlled laboratory conditions (25 £ 1 °C, light intensity
of 40 umol photons m™ s7', 12:12 h light/dark cycle) and gently shaken daily to avoid cell
sedimentation. The purity and identity of the strains were confirmed by routine microscopic
examination, and no heterotrophic bacterial contamination was detected. Cell density was
performed under a microscope (Olympus BX51, Japan) using a Sedgewick-Rafter counting
chamber, and a cell counting tool (CCT v1.4, China, https://drwater.net) was used for recording
and preliminary statistical analysis to determine growth phases (lag, exponential, stationary,
and decline). These microbial tests ensured that the observed MIB release dynamics could
be attributed specifically to cyanobacterial physiology rather than contamination from other
microorganisms. To model temporal variations in eyg and tyg produced by Pseudanabaena
cinerea FACHB 1277 and Planktothricoides raciborskii, we developed stage-specific equations
for f. For cell densities below 80% of K (Phase I), f was derived from the logistic growth
equation to capture early- to mid-growth dynamics (Eq. 3). For densities approaching K (>80%,
Phase Il), f was modeled using residual growth capacity to describe the stationary phase

(Eq. 4):

N(t) Ore™t
fel-al| o~ ) =l-al o ety a2 )

1 K—N(®)
f=gt—F ®tf (4)

Here, a; and a, are variation coefficients, T is the cell doubling time, and 8 serves as a correc-
tion factor representing the influence of physical and biological processes in the environment on
MIB concentrations, such as degradation, volatilization, adsorption, and accumulation effects.
Model parameters (N, K, r) were estimated via logistic curve fitting, while a4, a,, and  were



determined via linear regression. Adjusting r allowed simulation of growth and MIB production
under varying environmental conditions.

2.4 MIB Risk Assessment

For a given f, the cyanobacterial growth time (t) was derived from Eq. 3 and Eq. 4, and the
growth stage indicator (St) was calculated as:

t

St = —
2Typ

(5)

where T;p (time at which N(t) = K /2) marks the logistic curve’s inflection point. A smaller T;p
value indicates faster cyanobacterial growth and stronger crowding effects, thereby increasing
the likelihood of cell rupture and MIB release. By combining St with field-measured tyg con-
centrations, We performed a probabilistic analysis of St and tyg, calculated the probability dis-
tribution of ty g within each St interval, and used the expected value as the representative con-
centration for that interval. We generated a frequency distribution figure (Fig. S2) to quantify
the probability of ty,g occurrence at different growth stages, enabling MIB risk evaluation.

2.5 Statistical Analysis and Visualization

All analyses were conducted in R4.4.2 [67]. Data preprocessing and summarization used dplyr
[68], while regression analyses (linear/generalized linear models) employed the stats package.
Generalized additive modeling (mgcv [69]) and quantile regression (quantreg [70]) were ap-
plied where appropriate. Figures were generated using ggplot2 [71], with contour plots pro-
duced via the graphics package.

3 Results

3.1 Spatiotemporal Distribution Characteristics of MIB in Lake
Taihu

Between March 2022 and February 2023, two severe MIB outbreaks were observed in Lake Taihu
(Fig. 1A). The outbreaks exhibited distinct seasonal patterns, with elevated MIB concentrations
occurring primarily in spring (40.0+77.5ng L!) and summer (107 £230 ng L'%). The highest peaks
were recorded in April (66.5 + 101 ng L'!) and July (232 + 361 ng L), demonstrating statistically
significant seasonality (Fig. S3, p <0.001).

Spatially, MIB distribution showed clear heterogeneity across the lake (Fig. 1B). The northern
and southeastern regions consistently showed the highest concentrations, with the April peak
centered in the northern area and the July peak affecting both northern and southeastern areas.
Euclidean distance was used as the distance metric, and complete linkage was applied as the
agglomeration method in the cluster analysis of MIB concentrations from all 31 sampling sites.
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This analysis revealed four distinct spatial clusters corresponding to different lake regions (West,

Center, Southeast, and North)(Fig. S1).

Analysis of the f value variation across clusters revealed an important pattern: the lowest val-
ues during the log growth phase of f were typically followed by MIB outbreaks (Fig. 1C). Con-
current 16S RNA gene sequencing identified Pseudanabaena and Planktothricoides as the dom-
inant MIB-producing genera, though their abundances varied significantly (Fig. S4). While Mi-
crocystis dominated the cyanobacterial community for most of the study period (Fig. 1D), Pseu-
danabaena reached its peak relative abundance (31.0%) in September. In contrast, Planktothri-

coides remained at much lower levels (1.4%).
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Fig. 2: Growth and odor compound production of cultured target odor-producing cyanobacteria: Logistic growth
fitting for Pseudanabaena (A) and Planktothricoides (B), and corresponding MIB production patterns (C),
with raw data from refs [27] and [25] respectively.

3.2 Modeling the Relationship Between Cultured Cyanobacteria
Growth and Extracellular MIB Ratio (f)

The observed f ratio in Lake Taihu water samples exhibited a characteristic temporal pattern
(Fig. 1C). To further elucidate this pattern, we analyzed the growth and odor production dy-
namics of two laboratory-cultured odor-producing cyanobacteria species (Pseudanabaena and
Planktothricoides) undervarying light conditions. A logistic growth-based model was developed
to characterize the dynamics of the extracellular-to-total MIB ratio (f) (Eq. 3, Eq. 4). The model ef-
fectively captured the growth trajectories of both Pseudanabaena and Planktothricoides (Fig. 2A,
2B, Fig. S5, Fig. S6). Under different light regimes, both extracellular MIB (eyg) and total MIB
(twig) concentrations increased during the early growth phase (Fig. 2C), in parallel with rising
cell densities. MIB production peaked when cell densities approached approximately half of
the environmental carrying capacity (K), and remained relatively stable thereafter.

During growth and odor production, both species showed a consistent f ratio pattern: an initial
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Fig. 3: Model development and performance for extracellular MIB ratio (f): (A) Logistic growth curve illustrating
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parameters (@, &4, B); (C) Model residual analysis for both species; (D) Modelled ratio (line) and observed

ratio (circle) of extracellular MIB to total MIB (f) for cultured Pseudanabaena and Planktothricoides.

decrease reaching its minimum at approximately half of the maximum cell density, followed by
agradualincrease that stabilized near 0.5. Notably, while ey;g and ty g concentrationsincreased
slowly during the initial phase, they rose rapidly during the subsequent phase of f ratio increase
(Fig. 3A).

Parameter estimation revealed significant interspecies differences: a; was substantially higher
for Pseudanabaena than for Planktothricoides (p < 0.01), while f showed the opposite trend
(p <0.01) (Fig. 3B). The model demonstrated good overall performance, with relatively small
residuals across most growth conditions (Fig. 3C). Under varying light conditions, the observed
changesinthe f values of the two cultured odor-producing cyanobacteria were well captured by
the model-derived f value curves (Fig. 3D). Moreover, despite differences in species and experi-
mental conditions, the f value trajectories exhibited similar patterns across treatments. Specif-
ically, in the first phase, the f value declined and then increased, while in the second phase, it
fluctuated before stabilizing at a relatively constant level (Fig. 3A, Fig. S7).
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3.3 Spatiotemporal Variation of Odor-Producing Cyanobacteria
Growth Stages in Lake Taihu

The dominant odor-producing cyanobacterium Pseudanabaena in Lake Taihu exhibited high
cell densities from July to October, followed by a significant decline starting in November (Fig.
S8). Among all regions, the northern and southeastern parts of the lake consistently showed
higher Pseudanabaena cell densities. Notably, some sites in the northern region still recorded
cell densities exceeding 10° cells L as late as December and the following January.

Field monitoring of algae has shown that Pseudanabaena is the main odor-producing
cyanobacterium. Therefore, when applying the model to Lake Taihu, MIB is assumed to be
solely produced by Pseudoanabaena. The cultivation-based model was successfully applied to
field data from sampling locations throughout Lake Taihu to characterize growth parameters
and determine St values for odor-producing cyanobacteria. Analysis revealed two distinct
seasonal growth patterns across the lake. A primary growth phase developed from May
through November as water temperatures increased, followed by a secondary, smaller-scale
growth phase (St) occurring between December and April after winter production (Fig. 4A).
Examination of algal growth stages across different cluster regions demonstrated strong
synchronization between cyanobacterial growth dynamics and MIB outbreak events (Fig. 4B).

To enable broader application of the model across Lake Taihu, we compiled data on water tem-
perature, solar radiation, and odor-producing cyanobacteria growth patterns under various con-
ditions from multiple sources (Table S1, Fig. S9, Fig. S10). By analyzing these monthly variations,
we established relationships between environmental factors (temperature and light intensity)
and the intrinsic growth rate () of cyanobacteria. Our analysis revealed clear seasonal differ-
ences in the distribution of cyanobacterial growth stages (Fig. 5A). From spring (March 2022)
through winter (February 2023), the growth stages followed a consistent pattern of initial in-
crease followed by gradual decline across the entire lake. Spatially, the northern and south-
eastern regions consistently showed more advanced growth stages compared to other areas
throughout all seasons.

The seasonal progression of growth stages exhibited distinct spatial patterns. In early spring,
odor-producing cyanobacteria first began growing in the northwest and southeast regions. By
summer, active growth had spread to most areas of the lake. During autumn, the northern,
southern and southeastern regions reached later growth stages, while in winter, cyanobacterial
growth became minimal across nearly the entire lake, with only a small portion of the northern
region showing any activity.

The relationship between odor-producing cyanobacteria growth stage (St) and total MIB
concentration (tyg) was further analyzed to assess annual odor risk distribution in Lake Taihu
(Fig. 5B, Fig. S11). The analysis revealed similar spatial patterns for the probability of MIB
exceeding both 10 ng L'* and 50 ng L thresholds, with the higher threshold’s probability
typically being half that of the lower threshold.

Seasonal risk patterns showed elevated MIB concentrations occurring during two main periods:
spring (March-May) and late summer through autumn (July-October). June represented a tran-
sitional period between these two risk episodes, while from November to February, most of the

11
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lake showed minimal risk except for localized areas in the northern and southeastern regions.

Spatially, spring risks were primarily concentrated in the northern lake region. During late sum-
mer and autumn, high-risk areas expanded to encompass nearly the entire lake. Throughout
all seasons, the northern and southeastern regions consistently emerged as high-probability
hotspots for elevated MIB concentrations.
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4 Discussion

4.1 High-risk conditions for rapid MIB-producer growth and
crowding-induced release

Understanding the environmental conditions that promote rapid growth and crowding of odor-
producing cyanobacteriais essential for predicting MIB risk dynamics in source waters. Our anal-
ysis reveals that the inflection point time (T;p) from logistic growth modeling serves as a robust
indicator of when cyanobacterial populations reach critical densities associated with elevated
MIB release risk. Shorter T;p values indicate faster growth rates and earlier onset of crowding
effects, ultimately leading to MIB release and higher extracellular concentrations.

13
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dose (I), and initial cell density (N,); (B) Estimated probability of MIB concentrations exceeding the 10 ng
L threshold under identified high-risk conditions.

Field observations from Lake Taihu demonstrate that T;p shows consistent negative cor-
relations with three key environmental factors: initial cell density, light availability, and
temperature within typical lake conditions (15-35°C; 0.1-0.4 mol m? d* underwater light,
Fig. 6A). When carrying capacity remains stable, higher initial cell densities substantially
shorten the growth stage duration, accelerating the progression to crowding conditions.
Similar acceleration occurs under favorable light and temperature conditions, where increased
light intensity and warmer temperatures enhance growth rates, reducing T;p and promoting
earlier cell lysis and odor compound release.

These relationships explain the characteristic bimodal pattern of MIB events in Lake Taihu, with
risk peaks occurring at approximately 15°C and above 30°C under moderate light conditions
(Fig. 6B). The model outputs confirm that temperature-mediated changes in cyanobacterial
growth dynamics represent the primary driver of seasonal MIB risk variations, matching
historical patterns of spring and summer odor outbreaks in the lake.

4.2 Modeling MIB Partitioning Dynamics in Relation to
Cyanobacterial Growth Phases

The production and distribution of 2-methylisoborneol (MIB) by odor-producing cyanobacterial
cells are influenced by both their growth stage and environmental stressors. Previous studies
have rarely focused on the intracellular and extracellular distribution of MIB during the growth
of cyanobacteria in both natural aquatic environments and laboratory cultures. Some even sug-
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gested that the variation in MIB partitioning lacks a discernible pattern [72, 73]. In this study, we
introduce theratio f (ey;5/tmip) @s a key indicator to represent the distribution pattern of MIB.
Our findings show that f is not a constant, but follows a specific dynamic trend, which is mainly
attributed to cell crowding effects (Fig. 7). After synthesis, MIB is primarily bound to cytoplas-
mic and soluble protein fractions within cyanobacterial cells [74]. The major mechanism of MIB
release is cell lysis, occurring either through programmed cell death or mechanical rupture of
the cell wall [32, 37, 39, 46]. In this study, we established a model describing the relationship be-
tween f and growth time t, and further proposed a metric—growth stage (St)—to evaluate the
distribution of cyanobacterial growth stages across the lake (Fig. 7). The St index ranges from
0 to 1, representing the progression of cell growth from the lag phase to the stationary phase,
with St = 0.5 corresponding to the inflection point of the logistic growth curve. A higher St in-
dicates a larger proportion of cells in the later stages of growth, implying a greater potential for
MIB release. The St values proved particularly informative, as values approaching 0.5 reliably
indicated when populations reached the inflection point of logarithmic growth - a critical thresh-
old associated with elevated risk of substantial MIB release. As cell growth progresses toward
the stationary phase, environmental cell density increases, leading to intensified crowding ef-
fects. These conditions exacerbate cell damage and apoptosis, causing a larger proportion of
MIB to be released into the surrounding water [75]. When applying the model to real aquatic
systems, monocultures of odor-producing cyanobacteria are more suitable. In mixed cultures,
itis difficult to determine the contribution of each species to the odor compounds, which limits
the model’s applicability. Additionally, compared to laboratory conditions, variations in mete-
orological factors and community interactions in natural environments may affect the model’s
performance, highlighting areas for future improvement.

Our model enables the estimation of the growth stage distribution of odor-producing cyanobac-
teria, offering insights into current odor issues and supporting prediction of future taste and
odor (T&O) risks. From a management perspective, f serves dual functions: (1) as a T&O index
reflecting the proportion of dissolved MIB (eys) to total MIB (tyg) in the water, and (2) as an
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ecological indicator of the relative proportions of cells at different growth stages. Model results
(Fig. 2A, B) demonstrate that f follows a nonlinear pattern—initially decreasing, then increasing
and eventually stabilizing—as the cell population transitions from the lag phase to the station-
ary phase. Duringthelogphase, f reachesits minimum when cell growth rate peaks at the inflec-
tion point of the logistic growth curve. After this point, crowding-induced stress increases, lead-
ing to significant MIB release due to cell damage and apoptosis. Toward the end of the log phase
and during the stationary phase, cell density approaches the environmental carrying capacity
and enters a state of dynamic equilibrium. At this stage, f is primarily influenced by total cell
density and the accumulation and degradation dynamics of ey in the environment. This trend
is consistent with observations reported in previous studies [32, 37]. By applying the f-model,
the growth stage distribution of odor-producing cyanobacteria can be inferred based on mea-
sured MIB partitioning. This framework enhances our understanding of T&O events in freshwa-
ter lakes and reservoirs and provides valuable guidance for implementing more targeted man-
agement strategies. However, in real aquatic environments, the ideal conditions assumed by
the model are often not fully met. For example, water exchange may introduce new cells or dilu-
tion effects, and nutrient pulses or light fluctuations can lead to time-varying growth rates and
environmental carrying capacities. In the future, to enhance the model’s applicability, further
adjustments and optimizations may be necessary, such as introducing time-varying carrying
capacity K(t), adding migration terms, or considering predation loss functions.

4.3 Field-Based Analysis of MIB Dynamics in Relation to
Cyanobacterial Growth in Lake Taihu

Analysis of intracellular and extracellular MIB distribution patterns, influenced by cell crowd-
ing effects, provides insights into the growth dynamics and odor production processes of
MIB-producing cyanobacteria in Lake Taihu. Lake-wide distribution of St values revealed that
cyanobacterial growth initiates during the winter-spring transition in specific areas, beginning
with slow early-phase growth that continues until early summer, followed by accelerated
growth through late autumn. This bimodal MIB pattern shows temporal variations across
years. For example, monitoring data from 2019 and 2021 documented smaller May peaks (pre-
dominantly in the southeastern region) alongside major August peaks [76, 77]. Temperature
and light availability emerge as the principal environmental regulators of this pattern. When
surface water temperatures exceed 15°C in April-May, MIB-producing cyanobacteria achieve
substantial growth rates [78-80], benefiting from minimal competition and resulting in spring
MIB peaks. In the Shanghai QCS Reservoir, located at the same latitude, an MIB outbreak
caused by Pseudoanabaena was observed at the end of April [27]. Subsequent Microcystis
blooms (May-July) reduce light availability in subsurface layers where filamentous MIB pro-
ducers reside, temporarily suppressing their growth [81, 82]. Summer conditions typically
optimize growth for Pseudanabaena, when the temperature rises to 30°C, odor-producing
cyanobacteria gain a competitive advantage over traditional bloom-forming algae, resulting
in an increased odor risk [77, 81, 83, 84]. This ecological succession aligns with observed
microcystin concentration trends [76] and documented phytoplankton community shifts [85].

High-risk zone analysis reveals distinct spatiotemporal patterns between northern and south-
eastern regions. The southeastern zone showed modest April increases followed by July peaks
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persisting through September, while the northern region exhibited stronger spring peaks with
sustained MIB levels (>10 ng L!) between major outbreaks. These differences reflect contrast-
ing cyanobacterial growth dynamics: southeastern populations transitioned from late-growth
phasein March to early growth by April, suggesting significant cell mortality and limited MIB pro-
duction potential, whereas northern populations maintained log-phase growth through spring
with correspondingly higher production potential. The observed north-to-south progression of
odor risk zones represents a previously unreported spatial-temporal pattern in Lake Taihu’s MIB
dynamics.

Species-specific analyses demonstrate considerable variation in growth and MIB production
characteristics. Model parameterization revealed significant interspecies differences (Fig. 2E),
attributable to variations in intrinsic growth rates and MIB production efficiencies. Where a4
represents the coefficient between the rate of change in f with respect to cell density, indicating
the magnitude of the crowding effect on the intracellular-extracellular distribution of MIB as the
cell growth stage progresses, and is influenced by the cell growth rate. 5 represents the correc-
tion factor for MIB degradation or accumulation effects, and is related to the odor production
efficiency of individual cells. Comparative studies show Pseudanabaena achieves maximum
cellular MIB yields of 0.15 + 0.04 pg cell* under 85 umol photons m2 s [27], while Planktothri-
coides reaches 0.22 +0.02 pg cell™! under similar conditions [25]. These physiological differences,
combined with variations in population growth inflection points (T;p) across studies (Fig. S12),
contribute to species-specific impacts on odor event dynamics.

5 Conclusion

The intracellular and extracellular distribution dynamics of 2-methylisoborneol (MIB), a musty-
smelling secondary metabolite produced by cyanobacteria, remain poorly understood, limit-
ing our ability to predict odor events in source waters. This study developed a growth-stage-
based model to characterize MIB release patterns and applied it to Lake Taihu, where conven-
tional approaches have struggled to explain complex odor phenomena. Results revealed that
odor-producing cyanobacteria in the lake underwent two distinct growth cycles annually, cor-
responding to dual MIB concentration peaks—in spring and summer. The f model, derived
from laboratory-cultured cyanobacteria data, accurately captured these growth trends and was
successfully applied to field observations across the lake. By integrating environmental vari-
ables such as water temperature and light intensity, the model enabled lake-wide prediction
of cyanobacterial growth stages and corresponding MIB risk. Spatially, the northern and south-
eastern regions of Lake Taihu consistently showed higher growth potential and odor risk. Tem-
porally, high MIB risk was concentrated in early spring and mid-summer, aligning with inflec-
tion points in the cyanobacterial growth phase. Further analysis indicated that environmental
factors—especially temperature and light dose—significantly influenced the timing of growth
phase transitions, thereby affecting odor risk. Notably, the model identified two risk peaks un-
der moderate light conditions, reflecting the dual seasonal odor patterns observed in the lake.
These findings demonstrate the applicability of the f model as a predictive tool for early MIB
warnings and provide valuable insights for water quality monitoring and lake management.
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Environmental Implication

This study presents a mechanistic model linking cyanobacterial growth stages with the release
and partitioning of 2-methylisoborneol (MIB) into intracellular and extracellular fractions. Ap-
plied to Lake Taihu, the model enables spatial prediction of odor risk and informs targeted water
treatment strategies. By distinguishing dominant MIB forms, it supports the selection of appro-
priate control measures—coagulation-based cell removal or advanced oxidation for dissolved
MIB. This framework enhances early warning capability and provides actionable guidance for
managing taste and odor issues in freshwater systems affected by cyanobacterial blooms.
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