Using bio-based CaCO₃ functionalized sediment to simultaneously remove algae and COD through adsorption and sedimentation in water source reservoirs

Highlights

Yifan Du^{a,b} Jinbo Zhao^{a,b} Qingping Wang^a Jiacheng Feng^a Jinyi Qin^{©,a,b,*} Ming Su^{©,b,c,*}

- Bio-CaCO₃-modified sediment traps algae and COD via EPS bridging.
- Nanostructured CaCO₃ forms core-shell clusters with active surface sites.
- Pores and charge heterogeneity promote selective pollutant retention.
- DFT reveals strong EPS-CaCO₃ interaction at molecular level.
- System optimization achieved by RSM and XDLVO energy modeling.

^a School of Civil Engineering, Chang'an University, Xi'an 710064, China.

^b Key Laboratory of Environmental Aquatic Chemistry, State Key Laboratory of Regional Environment and Sustainability, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.

^c University of Chinese Academy of Sciences, Beijing 100049, China.

^{*} Corresponding to: Jinyi Qin (jinyi.qin@chd.edu.cn), Ming Su (mingsu@rcees.ac.cn)