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Abstract

In-situ turbidity enhancement can suppress algal growth in reservoirs but often exacerbates
chemical oxygen demand (COD) accumulation due to incomplete organic removal. This
study presents a biologically synthesized bio-CaCO5;-modified sediment, engineered via
Bacillus-induced carbonate precipitation, to simultaneously control algae and reduce COD. The
material forms 15-30 nm core-shell clusters with enriched -OH/-COOH groups and mesopores
(~19.76 nm), confirmed by SEM, XRD, FTIR, and BET (+1.02 m? g!). Adsorption tests against
Microcystis aeruginosa, Chlorella, and Limnothrix showed Langmuir-type monolayer binding
(R? > 0.97) and pseudo-second-order kinetics. XDLVO theory and DFT analysis revealed strong
EPS-Bio-CaCOy; interactions (AE g = 31.28 mJ m2; AE,4 = -1.07 ev). Optimal conditions (7.5
Wt% CaCOs, 56% residual Ca%*, 85 min) achieved 93.8% Chl-a removal, 88.6% COD reduction,
and 87.5% turbidity control (R? = 0.98), with minimal Ca®* leaching. By integrating chemisorp-
tion, interfacial adhesion, and pore confinement, this material provides a stable, eco-friendly

strategy for dual pollutant control and in-situ sediment remediation.

Keywords: Micro-nano CaCOj;; Sediment modification; Response surface; Extracellular poly-

meric substances (EPS); XDLVO.
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I Introduction

Algal blooms in source water reservoirs pose significant environmental and public health chal-
lenges by releasing odorous compounds (Su et al., 2015), organic pollutants, and algal toxins
(Wnorowski, 1992). These impacts disrupt aquatic ecosystems, degrade water quality, increase
treatment costs, and compromise the reliability of drinking water provision (Huisman et al.,
2018; Jan et al., 2023). Sediment resuspension (SR) has emerged as a viable in-situ strategy for
algal bloom control, primarily by attenuating underwater light and promoting particle-induced
sedimentation (Fang et al., 2024). When implemented under well-oxygenated conditions, SR
can function not merely as a physical suppression measure but also as a biogeochemical pro-
cess that promotes nutrient retention—stabilizing phosphorus through Fe-P co-precipitation
and limiting the mobilization of redox-sensitive metals (Su et al., 2025)—rather than trigger-
ing nutrient release. This dual role addresses concerns over internal loading and underscores
SR’s potential compatibility with drinking-water reservoir management. Nevertheless, turbu-
lence inherent to SR can mobilize organic matter, increasing chemical oxygen demand (COD).
Although SR introduces no external reagents and is therefore inherently suited to potable water
applications (Ewis et al., 2022; Srinivasan, 2011), its overall performance is strongly governed
by sediment geochemistry and structure—highlighting the necessity for targeted sediment op-

timisation.

In reservoir environments, the adsorption efficiency between suspended sediment particles
and algae is generally low due to electrostatic repulsion. Modifying clay particles has been
explored as a strategy to enhance their adsorption capacity (Bargante et al., 2020; Bergaya and
Lagaly, 2013; Farrokhpay and Bradshaw, 2012; Obaje et al., 2013). Key modification techniques
include altering the zeta potential (Li et al., 2015), adjusting suspension viscosity, and increas-
ing the number of exchangeable anions and cations, all of which influence the adsorption
flocculation-sedimentation process of clay particles. Common cationic modifiers, such as

polyaluminum compounds, quaternary ammonium salts (Cao et al., 2006), polyacrylamide (Yu
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et al., 2017), and aluminum chloride/aluminum sulfate (Liu et al., 2016) primarily function by
modifying surface functional groups (Cao and Yu, 2003). Beyond inorganic clay modifications,
organic compounds such as chitosan (Li et al., 2023; Yin et al., 2021) and starch (Cui et al.,
2023; Shi et al., 2016) have been investigated for improving adsorption performance. However,
their practical application is often hindered by poor stability in aqueous environments, high
self-aggregation tendencies, and elevated costs (Pan et al., 2019). Consequently, recent re-
search has focused on developing low-cost, stable, and biodegradable biological modification
methods (Sanghi et al., 2006), which offer a more sustainable and environmentally friendly

solution for algal control.

Bacillus sp. BF-VB2 modifies kaolin within a pH range of 4.0-10.0, forming a clay-aggregated
flocculant capable of treating high-turbidity wastewater (Bisht and Lal, 2019). Compared with
chemical flocculants, bio-modified clay-based flocculants have garnered increasing attention
due to their biodegradability and high adsorption efficiency. N, N, N-trimethylglycine-grafted
cellulose nanocrystals (CNC), in combination with kaolin, form a clay-aggregated flocculant that
effectively removes freshwater Chlorella vulgaris and marine Nannochloropsis oculate (Blockx et
al.,2021). Similarly, chitosan, a biopolymer derived from shrimp and crab shells, binds with clay
and soil particles to facilitate pollutant sedimentation (Zou et al., 2006). The surface of sediment
particles can be modified by algae-derived polysaccharides, which adsorb multivalent metal
cations, bind polar organic molecules, and gradually form soil aggregates through coordination

complexes and organic-inorganic interactions (Arduino et al., 1989).

Calcium (Ca) in clay plays a crucial role in soil aggregation, adhering to clay and silicate
minerals while forming aggregates with carbonates or Ca hydrates that fill pore spaces (Safar
and Whalen, 2023). Building on this, bio-CaCO; is most effectively deployed as MICP-derived
amorphous/micro-nano “seeds” bearing residual EPS, rather than relying on live-cell forma-
tion in the field; once introduced into resuspended sediments, these seeds act as persistent

nucleation substrates that continue to grow and transform within the sediment matrix under
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ambient pore-water chemistry, thereby delivering the practical benefits of biogenic crystal-
lization without maintaining microbial activity. In MICP, microorganisms such as Bacillus or
Sporosarcina mediate carbonate formation via urease or carbonic-anhydrase pathways, and
EPS serves as a nucleation template that tunes polymorph selection (e.g., calcite, vaterite)
and interfacial reactivity (Zhuang et al., 2018). Biogenically synthesized CaCO; commonly
exhibits hierarchical textures (e.g., dense core-grainy shell, raft-like or needle-like assem-
blies) (Chekroun et al., 2004; Pérez and Garcia, 2020), widely interpreted as signatures of
EPS-regulated nonclassical crystallization with surfaces enriched in -COOH/-OH that promote
electrostatic attraction, multidentate Ca-bridging, and steric entrapment with algal cells and
organic macromolecules (Kim et al., 2017; Seifan and Berenjian, 2019). Similarly, alkalinity-
regulated Thauera can enhance carbonate availability, with CO, reacting with Ca?* to yield
micro-/nano-CaCOjs, facilitating clay aggregation (Zhao et al., 2024). Thus, the main advantage
of bio-CaCO;3 over chemically synthesized CaCOj; lies in EPS-mediated organic-inorganic
coupling that endows seeds with adaptive polymorph evolution and highly functionalized
surfaces, while the in-sediment (“seeded”) secondary growth clarifies how benefits are realized
operationally; nevertheless, the roles of nanoparticle concentration, pore architecture, and

specific surface area—particularly under dynamic resuspension—remain underexplored.

In light of these considerations, we propose that sediment modification via micro-nano CaCO;
represents a feasible strategy to enhance clay aggregation and adsorption capacity, thereby
simultaneously inhibiting algal growth and improving COD removal in source water. In this
study, micro-nano CaCO3-modified sediments were synthesized using Bacillus bacteria, which
are known for their high urease activity and calcium carbonate precipitation ability. The physic-
ochemical properties, algal inhibition efficiency, and COD reduction performance of the modi-
fied sediments were systematically investigated. The underlying mechanisms were elucidated
through XDLVO theory and complementary modeling approaches. Furthermore, optimal oper-
ational parameters—including micro-nano CaCO; dosage and residual free Ca?* dosage—were

identified to maximize treatment efficacy. This technology not only addresses the organic pol-
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lutant surge linked to sediment resuspension in algal control but also advances in situ ecologi-
cal restoration by providing a chemical-free, material-efficient solution for water body manage-

ment.

2 Materials and methods

2.1 Sampling information

The sediment was collected from the 0-10 cm water depth sample of the reservoir river channel
of the Lianghui Reservoir in Zhejiang Province China (39°54'39.33"N, 116°24'48.18"E) (Table S1).
The sediment was sieved through a 100-mesh sieve and refrigerated at 4°C. Major components
were SiO, (68.72%) and Al,05 (19.56%) (mass ratio 3.5:1), with minor Fe, 05 (4.19%) (Table S2).
The activated sludge was collected from the aeration tank of the Fourth Wastewater Treatment
Plantin Xi’an. Chlorella was isolated from the Shiquan Reservoir in Shanxi Province (China) and
cultured in Aquatic Medium No. 6 (AM-6) at 25 °C under an illumination intensity of 2000 lux, with
a 12 h:12 h light-dark photoperiod. Microcystis aeruginosa and Limnothrix sp. were obtained
from the Freshwater Algae Culture Collection in the Institute of Hydrobiology, Chinese Academy

of Science and were cultured using BG11 culture medium.

2.2 Preparation of bio-CaCO;-modified sediment

Eight liters of Bacillus culture extract, containing residual extracellular polymeric substances
(EPS) and metabolic products, were introduced into a 12 L jacketed reactor as the organic tem-
plate for seed formation. The pH was maintained at 8-10 by automated titration with 5 mol L™
NaOH via an injection pump. Aeration was applied for 1.5 h, and dissolved oxygen (DO) was
controlled at 2-5 mg L1, After 24 h, the supernatant was collected and analyzed for CO;%™ and
HCO; concentrations to determine the Ca?* dosage required for 2%, 5%, 8%, 10%, and 14%

(w/w) micro-/nano-scale bio-CaCOj; seeds. The residual free Ca?* concentration was adjusted to
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0%, 50%, 100%, or 150% of the measured carbonate alkalinity. Calcium chloride solution was
then introduced dropwise under continuous stirring to induce nucleation within the EPS ma-
trix. This procedure produced amorphous/micro-nanocrystalline CaCO3 seeds enriched with
structural defects and EPS coatings, which were used directly in subsequent sediment-water

experiments to promote secondary mineral growth and contaminant immobilization.

Modified sediment was prepared by mixing 150 mL of a 25 g L™ clay suspension with bio-CaCO5-
modified Bacillus extract at a 3:1 volume ratio (clay:extract) in a 500 mL beaker. The suspension
was stirred at 200 rpm for 30 min to promote surface binding and carbonate precipitation. After
12 h of static aging, the mixture was centrifuged at 4000 rpm for 10 min. The resulting pellet was
washed twice with deionized water and oven-dried at 50 °C for 24 h. The dried solid was desig-

nated as bio-CaCO3-modified sediment and used in SEM, XRD, BET, and adsorption analyses.

2.3 Adsorption Kinetics and Isotherm Modeling

Adsorption behavior of algae onto bio-CaCO;-modified sediment was assessed through kinetic
and isotherm experiments using three representative species ( Chlorella vulgaris, Microcystis
aeruginosa, and Limnothrix sp.). In each experiment, 100 mL of algal suspension was mixed
with 50 mL of modified sediment and agitated at 120 rpm and 25 °C. For kinetics, fixed initial
Chl-a concentrations ( Chlorella = 1145 ug LY, M. aeruginosa = 3273 pg L™}, Limnothrix = 980 pg
L1) were used, and samples were collected at specific time intervals to fit pseudo-first-order

and pseudo-second-order models (Egs. S1-S5).

Equilibrium studies employed algal suspensions with species-specific Chl-a gradients: Chlorella
vulgaris (23.5-424.9 g L), Microcystis aeruginosa (91.7-1046.5 ug L), and Limnothrix sp.
(20.0-91.1 pg L'Y). Each 100 mL of algal solution was mixed with 50 mL of bio-CaCO;-modified
sediment (prepared under optimal conditions), and incubated at 25 °C with shaking at 120
rpm for 4 h to ensure adsorption equilibrium. Following centrifugation (1500 g, 20 min), the

supernatants were analyzed for residual Chl-a concentration. Adsorption data were fitted
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to Langmuir and Freundlich isotherm models (Eqs. S6-S9), with calculated parameters

summarized in Table S6. All experiments were conducted in triplicate to ensure reproducibility.

2.4 Interfacial Interaction Analysis (XDLVO and DFT)

Zeta potential of the bio-CaCO5;-modified sediment and algal biomass was measured using a
Zetasizer Pro Blue (Malvern, UK). Static contact angles were measured on dried compressed
pellets using ultrapure water, formamide, and diiodomethane (DAS3, KRUSS, Germany). Each
measurement was performed in quintuplicate. Surface energy components (Lifshitz-van der
Waals, electron donor, and electron acceptor) were calculated using the extended Young’s equa-
tion (ADAM, 1957; White, 1977) (Eqs. S10-S12), and the detailed calculation of the total energy

is described in the appendix (Table S7, Table S8).

Density functional theory (DFT) calculations were performed using the periodic plane-wave ap-
proach implemented in VASP with the GGA-PBE functional and DFT-D3 dispersion correction,
which has been shown to reliably capture both hydrogen bonding and van der Waals interac-
tions at organic-mineral interfaces (Zhao et al., 2018). SiO, (001) and calcite (104) surfaces were
constructed according to established crystallographic terminations (Kulkarni et al., 2012), with
CaCO; nanoclusters representing Ca** bridging domains, a validated strategy for modeling di-
valent cation-mediated adhesion (Cruz et al., 2012). Representative monosaccharide fragments
from algal EPS, such as glucuronic acid, were selected as model compounds due to their preva-
lence in EPS and their ability to retain the key -COOH and -OH functionalities responsible for
interfacial coordination, while offering computational tractability (Zhu et al., 2019). Adsorption
energies (AE) were calculated from total energy differences, providing molecular-scale insight
into EPS-mineral adhesion mechanisms. Computational details and model structures are pro-

vided in Supporting Information.
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2.5 Determination of Chl-a and COD in water samples

After a 15-min reaction, 10 mL supernatants were collected for analysis. Chl-a and COD were
measured according to Chinese standard methods HJ 897-2017 and HJ 828-2017, respectively.
All tests were performed in triplicate, and results are reported as mean values. Removal effi-

ciency was calculated as Eq. 1:

100 (C; — Cy)

Removal efficiency(%) = c
i

(1)

where C; and Cr are the initial and final concentrations (ug L), respectively. This equation was
applied to both Chl-a and COD measurements to evaluate algal inhibition and organic matter

removal performance.

2.6 Response surface methodology for process optimization

The effects of three operational variables—micro-nano CaCO; mass fraction, residual free Ca®*
dosage, and contact time—on Chl-a and COD removal were evaluated using response surface
methodology (RSM). A Box-Behnken design (BBD) was implemented via Design Expert 8.0 (Stat-
Ease Inc., USA) at a 95% confidence level (Table S4). A quadratic polynomial regression model
was used to predict removal efficiency. Detailed model equations and coefficient definitions are

provided in Supplementary Eq. (S16).

2.7 Microscopic characterization and structural analysis

The morphological characteristics of the sediment were captured by scanning electron mi-
croscopy (SEM) (FEI Quanta 600 FEG, USA), and the surface functional groups were reflected by

infrared spectroscopy FTIR (Nicolet™iS™5, Thermo Scientific, USA).
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2.8 Materials and data processing

All the chemical reagents needed for the experiment, such as sodium hydroxide, sodium car-
bonate, calcium chloride, glucose, and urea, were purchased from Sigma-Aldrich (MO, USA) and
confirmed as analytical grade. All experimental data were processed and visualized using Origin

2021 and ggplot2 in R (v4.0).

3 Results and discussion

3.1 Removal Efficiency Modulated by Multivariable Conditions

The removal efficiency of Chl-a and COD by Bio-CaCO3;-modified sediment exhibited distinct
nonlinear dependencies on CaCO; dosage, residual Ca®* dosage, and reaction time (Fig. 1A-
1B). For Chl-a, maximum removal (>92%) was achieved at CaCO; dosages >10% and reaction
times >60 min, with residual Ca?* showing negligible influence. The response surface revealed
a steep gradient along the CaCOj; axis and a plateau at high dosages and prolonged reaction
times, indicating that Chl-a removal was predominantly controlled by sorption site availability

and surface-mediated flocculation rather than dissolved Ca?*.

This behavior aligns with established mechanisms of Ca-based algal aggregation, where elec-
trostatic interactions and bridging with extracellular polymeric substances (EPS) enhance cell
destabilization (Gao et al., 2025; Wu et al., 2024). The minimal impact of residual Ca®* suggests
that surface-bound CaCOs, rather than free ions, drives flocculation, likely through charge neu-
tralization and interparticle bridging (Fig. S1A). The observed plateau implies a saturation ef-
fect, where additional CaCOj; or extended contact time no longer improves efficiency—a critical

consideration for optimizing operational parameters in practical applications.

The response surface analysis revealed distinct removal patterns for COD compared to Chl-a

(Fig. 1B). Optimal COD removal efficiency (~88%) was achieved at intermediate conditions: 6-

10
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8% CaCO; dosage, 50%-60% residual Ca?*, and 60 min reaction time. This system displayed
unique sensitivity to ionic strength, following a parabolic response curve where removal effi-
ciency initially improved with increasing Ca?* concentration but declined sharply beyond 80%.
This reversal suggests a transition from beneficial complexation at moderate ionic strength to
inhibitory effects at higher dosage, potentially due to competitive binding and oversaturation
of active sites (Sengco, 2001; Zhang et al., 2009). These findings highlight the dual role of cal-
cium ions in COD removal - while CaCOj5 provides the structural framework for adsorption, the
dissolved Ca?* dosage critically regulates removal efficiency through modulation of molecular

interactions.

To further dissect the role of each individual factor, a single-variable statistical analysis was
performed (Fig. 1C). For Chl-a, increasing CaCO5; dosage from 2% to 14% resulted in a signifi-
cant elevation in median removal efficiency from 76.4% to 91.5% (p < 0.01), with a concomitant
narrowing of interquartile ranges (Fig. S1B). A similar trend was observed with reaction time,
where removal peaked at 60 min and plateaued thereafter. In contrast, variations in residual
Ca®* dosage had negligible impact on Chl-a removal, reinforcing the conclusion that algal ag-

gregation is predominantly driven by solid-phase mineral properties.

In contrast, COD removal exhibited more complex behavior, with residual Ca?* emerging as the
dominant control factor. The system showed a clear optimum at 50% Ca?*, with median re-
moval efficiency increasing from 63.2% to 81.6% before declining at higher concentrations (p
< 0.05). The wider interquartile ranges observed throughout the COD tests, particularly at ele-
vated Ca?" levels, reflect the system's sensitivity to ionic environment fluctuations and suggest
multiple competing interaction mechanisms. This fundamental difference in response patterns
between Chl-a and COD removal underscores the distinct physicochemical processes governing
particulate versus dissolved pollutant sequestration, with important implications for system op-

timization in complex water treatment scenarios.

11
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Fig. 1: Bio-CaCO;-modified sediment removes Chl-a under the combined influence of CaCO; mass fraction,
residual free Ca** dosage, and reaction time (A); and removes COD under the same factor combination (B).
Chl-a removal rate is influenced by individual parameters including reaction time (10, 60, 110 min), CaCO;4
dosage (2%, 8%, 14%), and residual free Ca%* (0%, 50%, 100%) (C); COD removal rate responds to the same

experimental conditions (D).

3.2 Functional-Group Coordination and Interfacial Energetics

Validate Adsorption Kinetics

Adsorption of algae onto micro-nano CaCOjz;-modified sediment conforms to monolayer
chemisorption, as indicated by the higher coefficients of determination (R?) for both the
Langmuir isotherm and the pseudo-second-order (PSO) kinetic model (Fig. S2). The Langmuir
model outperformed the Freundlich model (Fig. 2A, Table S6), while the PSO model exhibited

R? values ranging from 0.971 to 0.997 (Fig. 2B), significantly exceeding those of the pseudo-
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first-order (PFO) model (0.533-0.910) (Liu et al., 2020; Zhang et al., 2020). The separation factor
(R, < 1) confirms the thermodynamic feasibility of the process (Table S6). The Langmuir
affinity constant (K ) revealed an order of Chlorella (0.011) > Microcystis aeruginosa (0.003) =
Limnothrix (0.003), reflecting the relative binding affinities between algal surface functional

groups and active sites on the modified sludge (Liu et al., 2020).

At equilibrium, the maximum adsorption capacities (Q,,) of the modified sediment reached
1113 ug g for Microcystis aeruginosa, 617 ug g* for Chlorella, and 2699 pg g* for Limnothrix,
corresponding to differencesininitial algal concentration. Experimental equilibrium adsorption
capacities (q,) ranged from 378 to 634 ug g'* and were consistent with calculated values (396.8-
662.9 ug g!) (Andersen et al., 1991; Safar and Whalen, 2023). Initial adsorption rates followed
the order: Microcystis aeruginosa > Limnothrix > Chlorella, which is governed by the initial con-
centration gradient (Fig. S3). A higher initial concentration (C;y) provides a greater mass transfer
driving force, accelerating algal cell diffusion to the adsorbent surface and enhancing the initial
adsorption rate (Caliskan et al., 2011). According to the PSO model, the instantaneous adsorp-
tion rate is proportional to % « k,qZ2.; at early stages (g, = 0), higher (C,) values correspond

to increased (q,), promoting faster initial adsorption (Tran, 2023).

The enhanced adsorption performance of Limnothrix is attributed to its elevated extracellular
polymeric substance (EPS) secretion (Han et al., 2024), which is rich in polysaccharides and an-
ionic functional groups such as carboxyl and sulfate (Fig. S4). These groups facilitate calcium-
mediated coordination (e.g., Ca-0 bonding), reinforcing interfacial adhesion (Rao et al., 2012).
Additionally, the filamentous morphology of Limnothrix increases the effective contact area and
provides entanglement sites, enhancing spatial compatibility with the porous structure of the
modified sludge and contributing to its significantly higher Q,,, following modification (Young,

2006).

Notably, the variation in Chl-a removal efficiency among the three algal species reflects

differences in cellular morphology, EPS production, and initial concentration gradients. Fil-
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Fig. 2: The adsorption isotherms of Chlorella, Microcystis aeruginosa, and Limnothrix were better described by the
Langmuir model than by the Freundlich model, as indicated by higher R? values, suggesting monolayer
adsorption onto homogeneous surfaces. The equilibrium adsorption capacities (q,, mg g**) were
substantially enhanced following Bio-CaCO; modification, particularly for Chlorella (A). Adsorption
kinetics were more consistent with the pseudo-second-order model, indicating that chemisorption was
the rate-limiting mechanism. The modified sediment exhibited markedly improved adsorption rates and
capacities across all algal species (B). FTIR absorbance spectra (a.u.) of CaCO,, original sediment, and
Bio-CaCO; composites plotted against wavenumber (cm™) demonstrate enhanced signals corresponding
to carbonate groups (v3: ~1400 cm™, v,: ~870 cm™) and organic functionalities (C=0,-OH), confirming
successful biomineral integration (C). Extended DLVO (XDLVO) interaction energy profiles (AGpg, mJ m™2)
plotted against separation distance (nm) reveal that Bio-CaCOj; surfaces exhibit deeper primary energy
minima and lower energy barriers compared to unmodified sediment, indicating stronger attractive
interactions (D). Density functional theory (DFT) simulations of glucuronic acid, a representative adhesive
saccharide in algal EPS, interacting with sediment surfaces. The adsorption energy (AE,4,) on pristine SiO,
is -0.76 eV, whereas the energy decreases to -1.07 €V on CaCO5-modified SiO,, indicating stronger
interfacial binding after mineral modification (E).

27s - amentous Limnothrix sp. exhibited higher removal rates due to its tendency to form dense
29 flocs via self-entanglement and Ca?*-mediated EPS bridging, thereby enhancing sedimenta-
220 tion and incorporation into bio-CaCO; aggregates (Han et al., 2024). In contrast, Microcystis
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aeruginosa forms buoyant colonies stabilized by gas vesicles, rendering it less susceptible to
gravitational settling or bridging flocculation (Verspagen et al., 2006). Additionally, kinetic
experiments employed fixed, high initial Chl-a concentrations, whereas equilibrium assays
used species-specific gradients (Mackay et al., 2016), further contributing to variability in ad-
sorption behavior. While these differences do not undermine the demonstrated effectiveness
of the modified sediment, they underscore the interplay of multiple removal mechanisms—
adsorption, bridging, and sedimentation—whose relative contributions vary across algal taxa.
Future work will incorporate direct biomass quantification, and EPS characterization to more

accurately resolve the dominant removal pathways (Deng et al., 2019; Lai et al., 2018).

Complementary spectroscopic and theoretical analyses collectively elucidate the enhanced
algae-sediment interaction mechanisms induced by bio-CaCO; modification. FTIR spectra
of the modified sediment revealed carbonate vibrational bands at 1414, 875, and 712 cm™
(aragonite/vaterite phases)(Andersen et al., 1991; Nilsen et al., 2004; Zou et al., 2019), together
with hydroxyl peaks at 3612 and 3400 cm™ (Al-OH, adsorbed -OH) and amide/carboxyl absorp-
tions at ~1630 cm™ (Fig. 2C), confirming the retention of EPS-derived organic moieties and
indicating organic-inorganic coupling between residual EPS and the mineral phase (Alexander
et al., 2018; Andersen et al., 1991; Sand et al., 2011). DFT simulations using glucuronic acid as
a model EPS ligand showed that, on silanol-rich silica, carboxyl oxygen atoms formed strong
hydrogen bonds (1.62-1.78 A) with surface Si-OH groups, contracting the C-O-Si bond length
from 1.39 A to 1.33 A and reducing the 0-C-0 bond angle from ~166° to ~138°, consistent
with reorientation of surface hydroxyls to accommodate the saccharide (Fig. S11A-D). The
adsorption energy was AE_ads = -0.76 eV, reflecting moderately strong but reversible binding
(Yu et al., 2011; Yu et al., 2024). On Ca**-modified surfaces, a dual-binding mode emerged,
where Ca?* bridged carboxylate oxygens of glucuronic acid and oxygen atoms from surface
silanols (Ca-0: 1.92-2.08 A) (Fig. S11E-H), increasing stability (AE,4¢)=-1.07ev, ~40% stronger)
(Fig. 2E) (Desmond et al., 2017). The corresponding dynamic structural evolution can be

visualized in the GIF animations for C-Si-O (Fig. S9) and Ca-Si-O (Fig. S10), which clearly
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show the persistence of Ca-O coordination and the more rigid adsorption geometry on Ca?*-
modified surfaces. Time-resolved trajectories indicated slower relaxation and persistent Ca-0
coordination, supporting a multi-point anchoring mechanism that restricts conformational
mobility and reduces desorption under shear. At the interfacial scale, XDLVO analysis showed
deepening of the primary minimum from -36.8 kT to -40.8 kT after bio-CaCO; modification
(Fig. 2D) (Wu et al., 2020), indicating stronger attractive forces and greater colloidal stability
(Table S8). The consistency between molecular-level DFT results and interface-level XDLVO
findings provides strong evidence that Ca?*-mediated hydrogen bonding and cation bridging
dominate the enhanced EPS-mineral adhesion, with organic-inorganic coupling, molecular

coordination, and interfacial energy optimization acting synergistically.

3.3 Structural refinement of sediment induced by Bio-CaCO;

integration

The addition of micro-nano CaCO; results in substantial changes in the sediment pore structure.
The mesopore proportion increases to 73.5%, and the BET-specific surface area rises from 10.08
to 11.71 m? g* (Fig. 3A), improving structural openness and enlarging the interaction interface
with algal cells (Bennett et al., 2012). This structural refinement promotes multi-site adsorption
of organic matter within and between clay mineral particles (Kleber et al., 2015). While the mi-
cropore volume remains stable, the total pore volume expands from 10.55 to 12.44 cm® g™, and
the average pore diameter decreases from 20.17 nm to 18.39 nm, reflecting a finer and more

complex pore network (Fig. 3B).

The unmodified sediment exhibited an angular, lamellar morphology with loosely aggregated
clay minerals. In contrast, the bio-CaCO3;-modified sediment displayed a uniform coating of
spherical particles (15-30 nm), which at higher magnification (200 kx) revealed dense-core and
rough-shell features composed of ~20 nm nodular subunits (D, = 19.76 nm) (Fig. 3D-E). These

nanospheres were embedded within the clay matrix, forming grape-like aggregates and a hi-
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Fig. 3: Particle size distribution curves before and after modification. The modified sample shows a significant
shift towards finer particles, as indicated by the red-marked region and arrow. Insets show the statistical
distribution of D10, D50, and D90 values (n = 5) (A). Comparison of specific surface area and porosity
between original and Bio-CaCO5-modified samples (B). SEM image of raw sediment particles, showing
irregular, compact, and angular morphology (C). SEM image of Bio-CaCO;-modified particles, forming
aggregated spherical structures with increased porosity (D). High-resolution SEM of a single spherical
Bio-CaCO; particle (D; = 19.76 nm), showing a nanoscale porous surface, favorable for enhanced
adsorption and surface interaction (E).
erarchical pore framework (Fig. S8). XRD analysis further confirmed that bio-modification in-
duced in-situ CaCO5;~ formation, with pronounced calcite reflections at 26 ~ 29.4° (104), 35.9°
(110), 39.4° (113), and 47.5° (018) (PDF#05-0586), accompanied by a broad amorphous hump
spanning ~20-35° 20 (Fig. S5). The coexistence of well-defined calcite peaks and an amorphous
background is indicative of partial crystallization from an amorphous calcium carbonate (ACC)
precursor, a transformation pathway commonly associated with EPS-mediated nonclassical nu-
cleation (Rodriguez-Navarro et al., 2016; Rodriguez-Navarro et al., 2016). The absence of calcite
peaks in the unmodified sediment excludes the possibility of inheritance from the raw mate-
rial, confirming that crystalline domains were generated during the bio-modification process.

Moreover, the relatively low peak intensities and broadened full width at half maximum (FWHM)

suggest nanocrystalline dimensions and lattice disorder, consistent with the presence of defect-
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rich seeds capable of continued polymorphic transformation within the sediment microenviron-

ment.

The combination of nanospherical morphology and crystalline phase transformation suggests
the successful formation of bio-synthesized micro/nano-scale CaCO5 on the sediment surface.
This hierarchical pore structure facilitates electron transfer and the directional aggregation of
amino acids and small proteins (Wang, 2016), regulates the microbial membrane microenviron-
ment, and promotes the self-organization of CaCO; into a mesopore-dominated architecture.
The morphological evolution aligns with EPS-mediated nucleation and self-assembly mecha-
nisms reported for biogenic minerals, underscoring the synergistic role of microbialinterfacesin
directing pore-scale organization and improving the capacity for algal and COD removal (Nilsen

etal., 2004; Zou et al., 2019).

Notably, the formation of organized CaCO; nanostructures is accompanied by the development
of moderately hydroxylated surfaces, as revealed by FTIR and supported by DFT analysis (Sec-
tion 3.2). These surfaces provide reactive Ca-OH sites capable of multidentate complexation
with EPS functional groups, reinforcing the interfacial affinity established by the hierarchical
morphology. This structural-chemical consistency validates the dual role of bio-CaCO; in pro-
moting both surface reactivity and architectural stabilization, thereby supporting the observed

enhancements in EPS retention and overall removal performance (Bowers et al., 2015).

3.4 Predictive Modeling of Dual Pollutant Removal Using

Box-Behnken Design
F value or p value is often used to evaluate the significance of each influencing factor in the
regression model (Zou et al., 2006). The model equation was evaluated by analysis of variance

(ANOVA) (Table S9). Only when the test condition of p <0.05 was the model and the influencing

factor considered significant (Table 1).
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Table 1: ANOVA analysis for Chl-a and COD removal regression. (~ p values > 0.05 were consid-
ered to be not statistically significant.)

Model term Coefficient  F-value P-value Coefficient  F-value P-value
Response Chl-a coD
prob <0.0001 <0.0001
R? 0.9939 0.9827
Pred. R? 0.9187 0.8054
CV (%) 0.95 3.64
Intercept 93.30 126.91 <0.0001 87.52 4410 <0.0001
A 6.27 466.53  <0.0001 -10.00 105.76  <0.0001
B 1.63 31.31 0.0008 -3.87 15.83 0.0053
C 3.15 118.03 <0.0001 3.17 10.63 0.0139
AB’ -0.08 0.00946 0.9251 -9.01 42.99 0.0003
AC 1.04 6.35 0.0398 -1.16 0.71 0.4285
BC 1.26 2.35 0.1689 10.39 57.10 0.0001
A? -7.40 341.29 <0.0001 -5.45 16.52 0.0048
B2 -3.86 92.99 <0.0001 -14.68 120.02  <0.0001
c? -2.55 40.58 0.0004 -5.19 15.01 0.0061

s The coefficient of variation (CV%) of the model reflects the relative dispersion of the data. The

3

[oN

s lower the value, the smaller the dispersion of the data set. In this study, the maximum value

;0 of the coefficient of variation (CV%) of COD removal efficiency was 7.31% (far below the 15%

3

~

. threshold), confirming the reliability of the experimental data (Yetilmezsoy et al., 2009).

32 The response-surface analysis indicates two fundamentally different interaction regimes. For

3

~

3 Chl-a, only the AC term (CaCO3xtime) is significant (F = 6.35, p = 0.040), pointing to a time-

17+ dependent generation of chemisorption sites. During the first hour, moderate dosages (4-6 wt
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Fig. 4: Bio-CaCO5;-modified sediment achieves optimal Chl-a removal efficiency under the combined effects of
CaCO; dosage, residual free Ca2* dosage, and reaction time, with CaCO; dosage identified as the dominant

factor (A). COD removal efficiency under the same conditions is primarily influenced by residual free Ca*

concentration (B). Turbidity reduction during the resuspension-settling process reflects the sediment’s

flocculation-enhancing effect (C). Interactive effects of CaCO; dosage and residual free Ca?* on COD

removal efficiency are shown in a response surface plot, indicating a non-linear synergistic relationship (D).
%) (Fig. 4A) recrystallise into calcite/vaterite nanospheres whose freshly exposed Ca-OH groups
form inner-sphere complexes with uronic and sulfonic residuesin algal EPS (AE ;45 = -1.07 eV) (Li
and Stenstrom, 2014; Okoth et al., 2008). When these sites approach saturation (~93 % removal)
the uptake curve flattens, and neither higher dosage nor extended contact adds benefit—hence

the non-significance of BC (Ca%* xtime). This behaviour agrees with reports that particulate

algal destabilisation is governed by solid-phase Ca sites rather than bulk Ca®* concentration

(Keiluweit and Kleber, 2009).

Notably, the response surface analysis (Fig. 4D) reveals steep gradients and pronounced curva-
ture, indicating a strong nonlinear synergy between CaCO; dosage and residual Ca®* in enhanc-
ing COD removal. Under optimal conditions (~ 6-8 wt% CaCOs, residual Ca?* < 60%), divalent

Ca®* serves as an electrostatic bridge between carboxylate and phenolic groups in dissolved or-
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ganics and silanol (Si-0) or aluminol (Al-OH) groups on mineral surfaces (Keiluweit and Kleber,
2009; Najafi et al., 2021). Simultaneously, CaCO5-induced mesoporosity increases the accessi-
ble binding surface area, while hydrolysis-derived bicarbonate promotes the accumulation of
hydrophilic a-helical proteins in algal EPS, enhancing microalgae-sediment adhesion (Adam-
czyk et al., 1992; Safar and Whalen, 2023). Moderate free Ca?* levels (~ 8-10%) also facilitate co-
ordination with algal carboxyl groups, promoting aggregation and further stabilizing flocs (Cao

etal., 2025).

In contrast, when residual Ca* exceeds ~ 80%, the system enters an inhibitory regime. Excessive
Ca®* compresses the electric double layer, reverses surface charge, and displaces weakly bound
fulvate, thereby suppressing COD adsorption (Najafi et al., 2021). This is further supported by
the positive coefficient of the Ca* x time (BC) interaction term in the quadratic model, reflect-
ing that prolonged contact intensifies Ca?* accumulation and exacerbates adsorption decline—
consistent with observations from carbonate-rich riverine systems (Safar and Whalen, 2023). El-
evated Ca?* also electrostatically shields Si-O and Al-OH groups, weakening their hydrogen-
bonding capacity with organics (Greenland and Quirk, 1962; Sand et al., 2011). These results
underscore the need for precise regulation of CaCO; dosage, Ca?* levels, and reaction time to
sustain the favorable coordination regime while avoiding overloading effects that impair treat-

ment efficiency.

According to the specific parameters (Table 1), the regression model is statistically significant at
the 95% confidence level. The regression equations of the predicted response surface quadratic

model are shown in Eq. (11) and Eq. (12):
Y; (%) = 61.206 +4.132A +0.173B+0.145C +0.00345AC-0.205A%-0.0015B8%-0.001C% (11)

Y, (%) = 67.676 +2.487A +0.5B +0.136C -0.030AB +0.0042BC -0.151A% -0.0058B% -0.0021C>
(12)

The dosage of micro-nano CaCO; was 7.5%, the residual free Ca?* was 56%, the contact time

was 85.35 min, and the maximum removal rates of Chl-a and COD were 93.83% and 88.64%,
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respectively (Table S10).

Biologically modified sediment exhibits markedly enhanced stability during the resuspension
process, achieving over 90% reduction in suspended particulate levels within 60 minutes
(Fig. 4C). After 30 minutes, the measured value drops to 48.6 NTU, significantly lower than
those observed for inorganic-modified (81.3 NTU) and unmodified sediments (231 NTU).
This improved performance under both short- and long-term conditions indicates stronger
resistance to hydrodynamic disturbance and more effective maintenance of water clarity
(Fig. S7). These findings support the use of micro-nano CaCO5-based biological modifica-
tion as a low-disturbance and efficient strategy for algal control and aquatic environmental

enhancement.

3.5 Synergistic Effects of Surface Potential and Mn Redox Cycling

The surface electrical properties are pivotal for modulating algal removal efficiency (Yu et al.,
1995). Bio-CaCO5; modification led to a Zeta potential shift from -13.2 mV to -9.65 mV, atten-
uating electrostatic repulsion between negatively charged algal cells and sediment particles.
Simultaneously, the extended DLVO interaction energy (AGg) increased from 26.373 to 31.282
mJ m2, indicating enhanced exposure of electron-donating groups and stronger interfacial in-

teractions.

The improved performance of the bio-CaCO5;-modified sediment can be attributed to several
interconnected mechanisms that operate consistently across molecular, interfacial, and geo-
chemical scales. First, the modification process enriches the sediment surface with hydroxy-
lated sites and Ca?*-mediated bridging domains (Woods Jr, 2004), increasing the density of ac-
tive coordination points for algal EPS and mineral particles. Second, extended XDLVO analy-
sis revealed a deeper secondary minimum (-40.8 kT compared to -36.8 kT for unmodified sedi-
ment), which favors reversible adsorption and temporary retention, while the high primary bar-

rier (~1900 kT)) inhibits irreversible fouling (Adamczyk et al., 1992). Third, the enhanced EPS-
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Fig. 5: Schematic illustration of the interaction mechanisms between Bio-CaCO5-modified sediment and algal
extracellular polymeric substances (EPS).
surface interaction—particularly with the bound EPS fraction—was associated with a 15.3% re-
ductionin contactangle, indicatingincreased surface hydrophobicity that further promotes con-
trolled cell attachment. Together, these effects yield an interface that combines strong yet re-

versible binding, preventing both inefficient capture and long-term blockage.

Additionally, manganese (Mn) fractionation was employed as a redox-sensitive geochemical
tracer to evaluate the interfacial behavior of the bio-CaCO5;-modified sediment (Su et al.,
2025). Under aerobic sediment resuspension, where dissolved oxygen exceeded 5 mg L, the
dispersion of bio-CaCO3 seeds within the sediment matrix provided persistent nucleation sites
for continuous in-situ crystal growth, while maintaining an oxidative microenvironment that is
known to suppress internal nutrient release through Fe-P co-precipitation. This environment
also likely promoted the activity of indigenous Mn-oxidizing bacteria, facilitating the oxidation
of soluble Mn?* to higher-valent particulate Mn species (e.g., Mn®*/Mn** oxides) (Tebo et al.,

2005; Zhou and Fu, 2020). These oxidized Mn forms, though not the primary removal pathway,
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can form coordination complexes or co-precipitate with CaCO5; and algal EPS, contributing to
aggregate formation and interfacial stabilization (Pulsawat et al., 2003). Correspondingly, a no-
table shift from exchangeable and reducible Mn to more stable oxidized fractions was observed,
indicating enhanced mineral-organic complexation and reduced ion mobility. Given that Mn
speciation responds sensitively to redox and binding environment changes, this behavior
serves as an indirect indicator of adsorption strength and interface robustness. These coupled
processes—surface potential modification by Ca*-mediated organic-inorganic coupling and
Mn redox cycling under well-oxygenated SR—collectively support the dual removal of Chl-a

and COD via adsorption-driven pathways without stimulating nutrient release.

4 Conclusion

Bio-CaCO; functionalisation of reservoir sediment enables efficient, in-situ control of algal
biomass and dissolved organics during resuspension, achieving up to 92% Chl-a and 88%
COD removal at the optimal condition (7.5 wt% CaCOs, 56% residual Ca%*, 85 min). The
bio-mineral coating forms 15-30 nm CaCO; nanospheres, increasing BET surface area (10.1 >
11.7 m? g'!) and generating ~18 nm mesopores, serving as crystallisation seeds that drive and
sustain amorphous-to-crystalline transformation within the sediment matrix. This process
preserves organic-inorganic coupling with residual EPS, while Ca®* release modulates surface
potential (-13.2 > -9.7 mV) and deepens the secondary XDLVO minimum, enhancing reversible
EPS-mediated adhesion. Together with the redox-responsive sediment microenvironment,
these structural and chemical attributes create a self-regenerating interface capable of main-
taining high removal performance under dynamic reservoir conditions, offering a practical and

environmentally benign strategy for long-term water quality protection.
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