Light-dominated selection shaping filamentous cyanobacterial assemblages drives odor problem in a drinking water reservoir

Ming Su^{a,e}, Yiping Zhu^b, Tom Andersen^c, Xianyun Wang^d, Zhiyong Yu^{a,e}, Jinping Lu^{a,e}, Yichao Song^b, Tengxin Cao^{a,e}, Jianwei Yu^{a,e}, Yu Zhang^{a,e}, Min Yang^{a,e,*}

^a Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085,

^bShanghai Chengtou Raw Water Co. Ltd, Shanghai, 200125,

^cDepartment of Biosciences, University of Oslo, P.O. Box 1066, Oslo, 316,

^dNational Engineering Research Center of China (South) for Urban Water, Shanghai, 200082,

^eUniversity of Chinese Academy of Sciences, Beijing, 100049,

Highlights

- · First discussion on the succession between two filamentous cyanobacteria
- Subtle niche differentiation shapes filamentous cyanobacterial assemblages
- PAR declines drove *Pseudanabaena* to replace MIB-producing *Planktothrix* in QCS

References

^{*}Corresponding author Email addresses: mingsu@rcees.ac.cn (Ming Su), yangmin@rcees.ac.cn (Min Yang)