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Abstract

Cyanobacteria can sense different light color by adjusting the components of photosynthetic

pigments including chlorophyll a (Chl a) , phycoerythrin (PE), and phycocyanin (PC), etc. Fila‐

mentous cyanobacteria are the main producer of 2‐methylisoborneol (MIB) and many can in‐

crease their PE levels so that they are more competitive in subsurface layer where green light

is more abundant, and have caused extensive odor problems in drinking water reservoirs. Here,

we identified the potential correlation between MIB biosynthesis and ambient light color in‐

duced chromatic acclimation (CA) of a MIB‐producing Pseudanabaena strain. The results sug‐

gest Pseudanabaena regulates the pigment proportion through Type III CA (CA3), by increasing

PE abundance and decreasing PC in green light. The biosynthesis of MIB and Chl a share the

common precursor, and are positively correlated with statistical significance regardless of light

color (𝑅2 = 0.68, 𝑝 < 0.001). Besides, the PE abundance is also positively correlated with

Chl a in green light (𝑅2 = 0.57, 𝑝 = 0.019) since PE is the antenna that can only transfer the
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energy to PC and Chl a. In addition, significantly higher MIB production was observed in green

light since more Chl a was synthesized.

Keywords: Pseudanabaena, 2‐methylisoborneol, phycoerythrin, chlorophyll a, chromatic

acclimation

1. Introduction

As an ancient group of photosynthetic prokaryotes, cyanobacteria have evolved a diverse set

of phytochromes and cyanobacteriochromes that enable them to sense and respond to ambient

light conditions in the range from 300 nm to 750 nm to optimize their photosynthetic activity

(Ikeuchi and Ishizuka, 2008; Gutu and Kehoe, 2012; Ho et al., 2017; Wiltbank and Kehoe, 2019).

In addition to the ubiquitous pigment Chl a that absorbs both blue and red light for principle light

harvest within photosystem II (PSII) and photosystem I (PSI) (Kirk, 2011; Luimstra et al., 2020),

cyanobacteria use phycobilisomes (PBS) as antenna of the photosynthetic pigment apparatus

to broaden their absorbable light color to red, orange, yellow and green within PSII (Stadnichuk

et al., 2015; Zheng et al., 2021). Therefore, the regulation of components of photosynthetic

pigments is essential tomaximally absorb the ambient light color spectrumas it changes, namely

chromatic acclimation (CA) (Kehoe and Gutu, 2006; Gutu and Kehoe, 2012; Grébert et al., 2018;

Wiltbank and Kehoe, 2019). As a result, light color becomes an important driver of competition

between phytoplankton species (Stomp et al., 2007; Luimstra et al., 2020; Holtrop et al., 2021).

In view of light wavelength affecting the penetration distance in water (Kirk, 2011; Wiltbank

and Kehoe, 2019), organisms growing in shallow waters tend to contain phycobilins (phyco‐

cyanin, PC) that can capture yellow/red light, while those at greater depth often contain more

of the phycobilins (phycoerythrin, PE) that can capture green light (O'Carra et al., 1980). Fila‐

mentous cyanobacteria tend to grow in subsurface and/or deep water layers according to field

observations (Halstvedt et al., 2007; Su et al., 2015) andmodeling studies (Su et al., 2014, 2019),

and they also proved to be themost important producer of an earthy‐musty odorant ‐ MIB. PE is
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one of themajor photosynthetic accessory pigments of red algae (Ficner and Huber, 1993), cryp‐

tophytes (van der Weij‐De Wit et al., 2006), and marine cyanobacteria (Bryant, 1982), e.g. Syne‐

chococcus (Grébert et al., 2018) and Pseudanabaena (Mishra et al., 2011). Pseudanabaena has

been widely observed as the MIB producer in lakes and reservoirs (Izaguirre and Taylor, 1998;

Zhang et al., 2016; Izaguirre et al., 1999). Note that, MIB is the secondary metabolite synthe‐

sized through the isoprenoid pathway (Bentley and Meganathan, 1981), that is also used for

biosynthesis of photosynthetic pigments (Zimba et al., 1999). Therefore, MIB production might

be affected by the biosynthesis of photosynthetic pigments, which may be regulated by CA in

Pseudanabaena in response to the ambient light conditions. The relationship between these

two physiological process remains unclear, more specially, whether the PE‐dominated photo‐

synthesis promotes MIB synthesis is critical to understanding the mechanism of MIB episodes

in reservoirs/lakes.

To date, six types of CA (naming CA1 through CA6) that have been identified for cyanobacte‐

ria in sensing ambient light color via regulation of phycobilisome composition (Sanfilippo et al.,

2019). CA1, CA2 and CA3 belong to green/red acclimation type, CA1 regulates the production

of PBS with different linkers , CA3 changes the levels of both PE and PC abundances, and CA2

changes PE abundance (de Marsac, 1977; Sanfilippo et al., 2019). CA4 is blue/green acclimation

type that changes the relative amounts of the bilin chromophores but not PBS proteins (San‐

filippo et al., 2019). CA5 and Ca6 belong to red/far‐red acclimation type. CA5 leads to a loss

of PC‐containing phycobilins in far‐red light, which are replaced by chlorophyll d–based light‐

harvesting antennae in the membrane, and CA6 (also called FaRLip) has been recently identified

in filamentous cyanobacteria Leptolyngbya as a newCA form that extends thewavelengths range

to far‐red light (Gan et al., 2014). The strains with different light‐harvesting strategies can en‐

hance their competition on ambient light according to field investigation (Tan et al., 2020) and

model study (Luimstra et al., 2020), which is probably driven by CA. On the other hand, the spec‐

trum of underwater light in lakes and reservoirs is changing due to the increasing eutrophication

and/or enhanced influx of orangic matter (Leech et al., 2018; Solomon et al., 2015), suggesting

an unintended influence on the PE‐containing MIB‐producers.
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On the basis of the studies described above and our previousMIB‐related studies in freshwater

systems, we put forward the hypothesis that MIB biosynthesis is regulated by chromatic accli‐

mation of PE‐containing cyanobacteria. Here, we investigate the influence of light color on the

levels of various photosynthetic pigments to examinewhether CA occurs in a PE‐containing Pseu‐

danabaena. We also evaluate the growth and MIB production under different light conditions

via culturing experiments, revealing the causalmechanism ofMIB biosynthesis in response to CA

process. Finally, we evaluate the potential applicability of this study for controlling the unpleas‐

antMIB‐deduced odor in drinking water reservoirs by adjusting underwater light color spectrum

based upon turbidity regulation.

2. Methods and Materials

2.1. Cyanobacterial culture and experimental conditions

The MIB‐producing cyanobacterium Pseudanabaena (FACHB‐1277) was obtained from the

Freshwater Algae Culture Collection at the Institute of Hydrobiology (FACHB‐Collection, China,

(Zhang et al., 2016)) and used in this study. It was originally isolated from Xionghe Reservoir,

and was identified according to 16S rDNA sequence. A Pseudanabaena cell exhibits an average

length of about 4 μm. The filaments of Pseudanabaena consist of 2‐40 cells, and usually

form compact brown mats and attach to the flask surface, which would turn into pink in the

post‐exponential growth stage (Fig. S1).

The pre‐cultured strain was grown under 30 μmol m‐2 s‐1 (cool white tubes, Philips, Nether‐

land) on a 12/12h light/dark cycle in BG11 medium (Nichols, 1973). Cells in exponential stage

were collected by centrifugation (17 g‐force, 2min), then the supernatant was removed, and the

fresh medium was added. This operation was repeated twice to remove the extracellular odor

compounds. Cultures with an initial cell density of approximately 2 × 106 cell L‐1 were grown in

plastic tissue culture flasks (NEST® T25)with PTFE cap (0.22 μm) containing 30mLmediumwithin

a custom‐made incubator where both temperature and light were controlled. All the treatments

were performed in triplicate except white light condition as the control and the position of each

flask was changed randomly every day to reduce the inhomogeneity of light acceptance. The
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temperature was controled at 25 °C in the experiments. Cultures were sampled every 3 or 4

d during a 35 d culture period for analyzing cell growth and MIB concentration. The samples

collected during the logarithmic phase (approx. day 15‐day 30) were used to evaluate the MIB

cell quota (the mean cellular MIB production) and fluroscense intensities of Chl a and PE.

LED lamps with a wavelength of 455 nm (blue), 520 nm (green), 620 nm (red) (half‐wavelength

< 5 nm) and white fluorescent lamps (cool white tubes, Philips, Netherland) were used as light

sources. The light intensity was set at 30 μmol m‐2s‐1 for all color conditions. An spherical quan‐

tum sensor (LI‐193, LI‐COR Inc., Lincoln, Nebraska, USA) was used to measure the light intensi‐

ties.

2.2. Sample analysis

Because Pseudanabaena tends to form mats on the flask surface, samples were vigorously

shaken, then 200 μL samples were collected to quantify the pigments, and 15 mL samples were

filtered using GF/F (Whatman, USA) membrane to obtain the extracellular MIB. After that, the

samples were dispersed using a SONIC Sonifier (Model: VC 105PB) with taperedmicrotip for 10 s

at 300W. FivemL sampleswere preservedwith 1% Lugol’s iodine for cell counting later according

to the method described by Li et al. (2012). The residual samples were used to determine total

MIB concentration. The total and extracellularMIB concentrationweremeasured using the solid

phase micro‐extraction (SPME) coupled with gas chromatography‐mass spectrometry (GC‐MS)

described by Su et al. (2015). All the standards and reagents were purchased from Supelco

(Sigma‐Aldrich Co., USA).

Pigment abundances were determined by the in‐vivo fluoroscopy (IVF), which has been

adopted by oceanographers and limnologists for over 50 years (Lorenzen, 1966). This method

is based on the fluorescence emission from photopigments in living cyanobacterial cells and

can provide a rapid estimation of the concentration of photopigments (Bertone et al., 2018).

Samples were diluted to ensure proportional relationships between fluorescence intensity

and pigments abundance, and the pigments abundances were evaluated according to the

integration of instant fluorescence intensity over a period of 40 µs, which is longer than their
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fluoresence lifetime (BEDDARD et al., 1975; Holzwarth, 1986). The pigment compositions were

identified by their excitation spectrum and emission spectrum, and the relative abundances

were determined by the corresponding emission fluorescence intensity. The 427/680 nm

(excitation/emission fluroscense wavelengths) were used to identify and quantify Chl a (Chang

et al., 2012), 488/588 nmwere used to identify and quantify phycoerythrin (PE) (Teale and Dale,

1970), 600/660 nm for phycocyanin (PC) (Chang et al., 2012), 633/660 nm for allophycocyanin

(APC) (Glazer and Stryer, 1983), and 513/556 nm for Carotenoids (Gillbro and Cogdell, 1989). In

addition, the absorption spectrum of samples were used to calibrate the proportion of detected

pigments based on the standard absorption spectrum of pure pigments (Fig. S3), as described in

Supplementary Material. Absorption spectrum and fluorescence emission intensities were

measured using a multimode microplate reader platform (Spark, Tecan). Corning 96‐well clear

plates were filled with 200 μL samples and shaken for 5 s before measurement of fluorescence

intensity.

2.3. Data analysis

Maximum growth rate at low cell densities 𝜇𝑙𝑜𝑔 (𝑑−1) was obtained for each light intensity

using a solution for the classic logistic growth model (Oberhaus et al., 2007):

𝑁𝑡 = 𝐾𝑁0
𝑁0 + (𝐾 − 𝑁0)𝑒−𝜇𝑙𝑜𝑔𝑡 (1)

where 𝑁0 and 𝑁𝑡 are the cell density on day 0 and 𝑡, respectively; and 𝐾 is the carrying ca‐

pacity of the culture environment, namely maximum attainable cell density in the given culture

environment. The fittingwas carried out using least‐squares method in R language (Team, 2017)

over the duration of each experiment.

The one‐way analysis of variance (ANOVA) with wilcox test was applied to compare the differ‐

ence in cell density, odor production and pigment production between different light intensities

and colors using R language. Values of p < 0.05 were regarded as significant.
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3. Results

3.1. Regulation of photosynthesis pigments of Pseudanabaena in response to different light

color

The composition of main photosynthetic pigments within Pseudanabaena cell changes along

with culturing light color (Fig. 1). Mainly 3 peaks of absorption spectrumwere observed for Pseu‐

danabaena cells cultured under white light. The peaks are 440 nm, 570 nm and 680 nm, cor‐

responding to the characteristic absorption peaks of Chl a (blue peak), PE and Chl a (red peak).

Four pigments were detected according to the absorption spectrum including Chl a (41.9%),

Carotenoids (24.6%), PE (21.9%) and PC (11.6%) under white culturing light, as shown in Fig. 1b.

This strain showed a different light‐harvesting strategy after the culturing light shift to red or

green colors. The most significant difference between the two culturing conditions is the abun‐

dance of PE (Fig. 1a). It was not detected under red light, while the proportion showed a sig‐

nificant high value of 28.9% under green light. Meanwhile, the Chl a also showed a higher pro‐

portion under green light (42.9%) than red light (39.8%) and white (41.9%). The proportion of

Carotenoids of 13.5% under green color, is significant lower than that under red (36%) andwhite

(24.6%) color. Besides, the proportion of PC is much higher under red (24.2%) than under green

(14.7%) and white (11.6%) color, respectively.

3.2. Cell growth and MIB yield of Pseudanabaena in response to light color

The growth characteristics of Pseudanabaena varied under different culturing light colors with

same light intensity of 30 μmol m‐2 s‐1 (Fig. 2a). The samples cultured within red light reached

a maximum cell density of (30 ± 2) × 109 cell L‐1 on day 30, with the growth rate of 0.787 ±

0.181 d‐1 during the logarithmic phase. In comparison, the samples cultured under green light

showed much lower maximum cell density ((8.1 ± 0.6) × 109 cells L‐1) on day 25, with sightly

lower growth rate of 0.756 d‐1. The logarithmic phase of white light cultured samples started

earlier than others, and the maximum cell density (19 × 109 cells L‐1) was observed at day 19,

with the growth rate of 0.562 d‐1. Noted that, the Pseudanabaena could not survive under solely

blue light.
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Fig. 1Light absorption spectra (a) and the photosynthetic pigments’ composition (b) of Pseudanabaena cultured under
white, green and red light color

Fig. 2Effect of light color on the cell growth (a) and MIB production (b) of Pseudanabaena (25°C, n = 3 for red, green
and blue light, n = 1 for white light), and the MIB cell quota (c) and fluroscense intensities of Chl a and PE (d) during the
logarithmic phase (day 15 ‐ day 30)
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The MIB concentrations generally followed the same pattern as the cell growth for red and

white light cultures. MaximumMIB concentrations ((2436 ± 23) μg L‐1) along with the maximum

cell density were obtained from the samples under red light on day 30; the samples under white

light showed a relatively earlier increase of MIB concentrations, with the highest concentrations

observed on day 19 (578 μg L‐1). MIB concentrations remained low for blue light samples due

to low cell densities. Nevertheless, the samples under green light showed slightly lower MIB

concentrations (69% ± 13.4%) than red light during the logarithmic phases (Fig. 2b), in spite of

the much lower cell density (Fig. 2a); hence the maximumMIB cell quota (median: 147 fg cell‐1,

LQR: 112 fg cell‐1) was obtained from green light cultures in comparison with red ones (median:

71 fg cell‐1, LQR: 31 fg cell‐1) andwhite ones (median: 63 fg cell‐1, LQR: 17 fg cell‐1) with significant

difference between red and green (p < 0.001, wilcox test, Fig. 2c).

The absorption near 570 nm was different for the cultures exposed to red and green light,

representing a great distinction in PE production (Fig. 2d and Fig. S2). The Pseudanabaena

produced little PE under red light, resulting in a very low ratio of Chl a to PE under red light (14.2

± 1.2) in comparisonwith those under green light (1.2 ± 0.3) andwhite light (1.9 ± 0.4) (p < 0.005,

wilcox test, Fig. 2d). The fluorescence emission intensity of Chl a per cell under green light was

1.69 times and 2.51 times higher than those under red and white light (Fig. 2d), which followed

similar pattern with MIB yield (Fig. 2c).

3.3. The relationship between MIB production and photosynthetic pigments

The MIB cell quotas of all cultured samples are positively correlated with Chl a abundance

regardless of light color. The correlation can be well described with a log‐log linear model as

illustrated in Fig. 3a (𝑅2 = 0.68, 𝑝 < 0.001). Meanwhile, the relative abundance of celluar

PE showed positive correlation with cellular Chl a for green lighting cultures during logarithmic

phase (𝑅2 = 0.57, 𝑝 = 0.019, Fig. 3b). Nevertheless, no correlation was observed for the

cultures in red light (𝑝 > 0.05, Fig. 3b).
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Fig. 3Correlation analysis ofMIB and photosynthetic pigments; (a)MIB cell quota and Chl a abundance (b) PE abundance
and and Chl a abundance under red and green light

4. Discussions

4.1. Biosynthesis pathway of MIB and photosynthetic pigments in cyanobacteria

Chl a is the primary pigment responsible for photosynthesis for cyanobacteria (Kirk, 2011), this

molecule contributes around 1.5% dry weight for cyanobacteria cells (Jeon et al., 2014; Zavřel

et al., 2017), suggesting that the biosynthesis of Chl a is of great importance for cyanobacteria.

Fig. 4a illustrated a brief pathway map of Chl a associated with other pigments. The biosyn‐

thesis of Chl a can be broken down into 2 parts, including 1) the complex ring structure that

begins with 5‐aminolevulinic acid (5‐ALA), and 2) the attachment of the phytol tail that synthe‐

sizes from isopentenyl pyrophosphate (IPP) etc. (Taiz and Zeiger, 2010). Alongwith this pathway,

carotenoids can be synthesized from IPP, and phycobilins including PE, PC and APC can be synthe‐

sized from 5‐ALA. MIB is a terpenoid produced as a secondary metabolite by some cyanobacte‐

ria and actinomycetes (Watson, 2004), it uses GPP as themonoterpenes’ precursor (Giglio et al.,

2011) (Fig. 4a). GPP undergoes a SAM‐dependent methylation driven by GPP methyltransferase

(GPPMT), resulting in the generation of an intermediate 2‐methyl‐GPP; this 2‐methyl‐GPP then

undergoes direct cyclization to produce MIB driven by MIB synthase (MIBS) (Giglio et al., 2011).

Positive correlation between MIB yield and Chl a abundance was observed regardless of the

light color for Pseudanabaena sp. (Fig. 3a), verifying that the MIB is synthesized along with

the side branch of pigment biosynthesis pathway as occurs in actinomycetes (Bentley and

Meganathan, 1981) and other cyanobacteria (Zimba et al., 1999); our evidence also supports
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the consistent allocation of carbon into MIB during the biosynthesis of pigments including Chl

a and carotenoids under different culture conditions, which is coincident with the evidences

using biosynthectic inhibition treatments on phytogene to phytofluene (Zimba et al., 1999).

Comparable studies are not found for MIB, but the other common earthy‐musty odorant

in drinking water ‐ geosmin, has been well studied. As illustrated in Fig. 4a, this irregular

sesquiterpene C15 compound is synthesized along with another side branch from Farnesyl

diphosphate (FPP) in both actinomycetes (Bentley and Meganathan, 1981; Seto et al., 1998;

Cane et al., 2006) and cyanobacteria (Naes et al., 1985, 1988, 1989; Jüttner and Watson, 2007).

Some strains can simultaneously produce MIB and geosmin, such as Oscillatoria f. granulata

(Tsuchiya and Matsumoto, 1999) and Pseudanabaena catenata (Jüttner and Watson, 2007),

further studies are required to understand the proportions of carbon fluxes along with the two

side branches for MIB and geosmin biosynthesis.

4.2. The correlation between MIB biosynthesis and chromatic acclimation of Pseudanabaena

Photosynthetic organisms capture energy from light via antenna pigments and transfer to pho‐

toreaction center for following metabolic processes (Watanabe and Ikeuchi, 2013). The light‐

harvesting antennas show large variation in structure and pigment composition, which enables

them to adapt to the light conditions in their natural habitat (Pandit et al., 2017). Cyanobacte‐

ria use phycobilins as antenna pigments (Bryant, 1994). Phycobilins are covalently linked via a

thioether bond to phycobiliproteins to form water‐soluble pigment‐protein complexes that can

aggregate to form phycobilisomes. These proteins are organized into disks that are themselves

stacked into rods, with disks containing shorter wavelength pigments on one end, and longer

wavelength pigments at the other end next to a central core. Thus, the shorter wavelength ab‐

sorbers: phycoerythrins (PE), 570 nm; are on the outside, phycocyanins (PC), 630 nm; within

them, allophycocyanins (APC), 650 nm; in the core, followed by carotenoids, Chl a inside the

photosynthetic membrane (Hayashi et al., 2003).

It is clear that cyanobacterial photosynthetic pigment components affect growth in a variety

of light colors. Cyanobacteria were less efficiently than most eukaryotic in using blue light for
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Fig. 4Chromatic acclimation regulates MIB production in Pseudanabaena. Schematic representation of the biosynthetic
pathway of MIB and photosynthetic pigments, adapted from Zimba et al. (1999) and Giglio et al. (2011) (a), and the
changes of photosynthetic pigments and MIB production under red and green light culture conditions (b)
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photosynthesis, owing to the imbalance between PSI and PSII imparted by blue light (Luimstra

et al., 2018). Mishra et al. (2012) observed that a Pseudanabaena strain can reproduce normally

under solely blue light only when the intensity is very low (85 lux, approx. 1 μmol m‐2s‐1), and

Lima et al. (2018) showed blue light combined with red light could favor both biomass and pig‐

ment productivity. A culture experiment of 8 cyanobacteria strains showed much lower growth

rates under blue light than white, red and green light, with identical photon flux densities of

12 μmol m‐2s‐1 (Wyman et al., 1986); a plausible hypothesis is that blue light results in limited

energy transfer to PSII, because cyanobacteria invest most Chl a in PSI, whereas their phycobil‐

isomes including PE are mostly associated with PSII but do not absorb blue photons (Luimstra

et al., 2019).

No adverse effects of cultivation in red/green light were observed for Pseudanabaena, indicat‐

ing that this spectral range serves photosynthetic demands of growth in this cyanobacterium.

The better growth rate in red than in green light was probably due to higher photosynthetic effi‐

ciency and quantum yield in the red light, which is coincident with red alga Porphyra umbilicalis

(Figueroa et al., 1995). PE efficiently captures green, but not red, light. This strain increased

their PE content in green light to optimize the light‐harvesting efficiency through CA (Fig. 2d), as

observed and revealed inmany photosynthetic organisms (Bryant, 1994; Kehoe and Gutu, 2006).

Among the six CA forms, our evidence supports that this Pseudanabaena performs CA3, by alter‐

ing both the PE and PC in the outer rod regions (Fig. 4b) (Sanfilippo et al., 2019). In green light, PE

makes up the outer rods, whereas in red light, PC is instead present, maximizing light‐harvesting

effectiveness, as observed in another freshwater cyanobacteria Fremyella diplosiphon (Haney

and Kehoe, 2019; Wiltbank and Kehoe, 2019). RceA was identified as the major CA3 regulating

gene in Fremyella diplosiphon (Terauchi et al., 2004), future studies on the gene expression of

Pseudanabaena CA3 process are required.

In this study, the cellular MIB yield under green light is significantly higher than that under

red light (Fig. 2b). Nevertheless, the MIB synthesis is irrelevant with PE according to the path‐

way map of MIB and typical pigments (Fig. 4a) and the evidences from the coincident relations

13



between MIB and Chl a abundance under different light color (Fig. 3). Since Chl a can not use

green light, the photosynthesis reaction center can only use the light energy transferred along

with PE→PC99KChl a in solely green light, while Chl a can use the red light photon directly and

use the light energy transferred from PC simultaneously in red light (Wehrmeyer, 2003). In addi‐

tion, We have evaluated the differences of pigment abundances under different light conditions.

The relative PE abundancewas significantly increased from 0 under red light to 0.20 under green

light, relative Chl a abundance was increased from 0.14 under red light to 0.23 under green light,

and the MIB cell quota is increased from 0.07 pg under red light to 0.12 pg under green light.

Therefore, we speculate that the photosynthetic efficiency of PE→PC99KChl a light‐harvesting

system under solely green light is lower than the PC99KChl a system under red light, more Chl a

was synthesized as the inevitable point of energy transport under green light. The mechanism

responsible for the higher MIB yield under green light is probably the side effect of CA3 process.

5. Conclusion

By investigating the biosynthesis ofMIB and photosynthesis pigments of aMIB‐producing Pseu‐

danabaena, we revealed that Pseudanabaena performed CA3, which alters the abundance of

photosynthetic pigments including Chl a), PE and PC under various light color conditions. MIB

yield is positively correlated with Chl a abundance under various light conditions, therefore it re‐

sults in higher MIB yield in green light than red light. Our findings reveal the causal correlation

between biosynthesis of MIB and photosynthetic pigments.
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