Light-dominated selection shaping filamentous cyanobacterial assemblages drives odor problem in a drinking water reservoir
Supplementary Material
1 Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences
2 Shanghai Chengtou Raw Water Co. Ltd
3 Department of Biosciences, University of Oslo
4 National Engineering Research Center of China (South) for Urban Water
5 University of Chinese Academy of Sciences
✉ Correspondence: Min Yang <yangmin@rcees.ac.cn>
Supplementary Material
All data analysis and illustration were performed using R 4.01. Data pretreatment and summary were performed using the dplyr2 and base packages in R, regression analysis including linear and generalized linear models were performed using the stats package1, generalized additive modelling was performed using the mgcv package3,4 quantile regression analysis was performed using the quantreg package5; contour figures were created by the graphics package1, other figures were prepared using the ggplot2 package6.
Year | Season | Min | Max | Median | IQR | Mean | SD | SE | CI |
---|---|---|---|---|---|---|---|---|---|
2013 | Spring | 0.037 | 0.078 | 0.055 | 0.013 | 0.055 | 0.010 | 0.002 | 0.004 |
2013 | Summer | 0.033 | 0.139 | 0.058 | 0.018 | 0.063 | 0.023 | 0.003 | 0.006 |
2013 | Autumn | 0.035 | 0.127 | 0.067 | 0.027 | 0.065 | 0.021 | 0.004 | 0.007 |
2013 | Winter | 0.028 | 0.201 | 0.053 | 0.089 | 0.088 | 0.064 | 0.021 | 0.050 |
2014 | Spring | 0.045 | 0.107 | 0.071 | 0.019 | 0.074 | 0.016 | 0.002 | 0.005 |
2014 | Summer | 0.032 | 0.093 | 0.059 | 0.016 | 0.061 | 0.013 | 0.001 | 0.003 |
2014 | Autumn | 0.024 | 0.105 | 0.044 | 0.027 | 0.051 | 0.019 | 0.003 | 0.007 |
2014 | Winter | 0.034 | 0.183 | 0.067 | 0.024 | 0.078 | 0.034 | 0.007 | 0.015 |
2015 | Spring | 0.034 | 0.104 | 0.069 | 0.019 | 0.068 | 0.016 | 0.003 | 0.006 |
2015 | Summer | 0.033 | 0.109 | 0.058 | 0.022 | 0.062 | 0.016 | 0.002 | 0.005 |
2015 | Autumn | 0.039 | 0.077 | 0.054 | 0.008 | 0.056 | 0.011 | 0.003 | 0.007 |
2015 | Winter | 0.022 | 0.081 | 0.053 | 0.028 | 0.052 | 0.022 | 0.009 | 0.023 |
Year | Season | Min | Max | Median | IQR | Mean | SD | SE | CI |
---|---|---|---|---|---|---|---|---|---|
2013 | Spring | 1.213 | 1.702 | 1.415 | 0.179 | 1.431 | 0.118 | 0.024 | 0.05 |
2013 | Summer | 0.759 | 1.665 | 1.110 | 0.269 | 1.137 | 0.194 | 0.025 | 0.05 |
2013 | Autumn | 0.843 | 1.71 | 1.029 | 0.445 | 1.140 | 0.281 | 0.047 | 0.095 |
2013 | Winter | 1.390 | 1.828 | 1.557 | 0.167 | 1.600 | 0.136 | 0.045 | 0.105 |
2014 | Spring | 1.578 | 2.162 | 1.796 | 0.121 | 1.800 | 0.130 | 0.019 | 0.038 |
2014 | Summer | 0.944 | 1.737 | 1.293 | 0.176 | 1.306 | 0.163 | 0.019 | 0.038 |
2014 | Autumn | 1.159 | 1.707 | 1.309 | 0.119 | 1.352 | 0.129 | 0.023 | 0.047 |
2014 | Winter | 1.561 | 2.362 | 2.008 | 0.196 | 2.008 | 0.189 | 0.039 | 0.082 |
2015 | Spring | 1.157 | 1.793 | 1.485 | 0.271 | 1.474 | 0.186 | 0.033 | 0.068 |
2015 | Summer | 0.895 | 1.867 | 1.411 | 0.414 | 1.333 | 0.264 | 0.037 | 0.074 |
2015 | Autumn | 0.729 | 1.365 | 1.145 | 0.234 | 1.092 | 0.189 | 0.052 | 0.114 |
2015 | Winter | 1.595 | 1.774 | 1.708 | 0.131 | 1.694 | 0.078 | 0.032 | 0.082 |
Year | Season | Min | Max | Median | IQR | Mean | SD | SE | CI |
---|---|---|---|---|---|---|---|---|---|
2013 | Spring | 1.008 | 1.469 | 1.326 | 0.156 | 1.313 | 0.113 | 0.023 | 0.048 |
2013 | Summer | 0.683 | 1.411 | 1.126 | 0.150 | 1.094 | 0.153 | 0.020 | 0.040 |
2013 | Autumn | 0.319 | 1.592 | 1.006 | 0.583 | 1.052 | 0.351 | 0.059 | 0.119 |
2013 | Winter | 1.367 | 1.735 | 1.543 | 0.161 | 1.542 | 0.132 | 0.044 | 0.101 |
2014 | Spring | 1.478 | 2.265 | 1.808 | 0.217 | 1.795 | 0.164 | 0.024 | 0.048 |
2014 | Summer | 0.808 | 1.705 | 1.237 | 0.192 | 1.228 | 0.195 | 0.023 | 0.045 |
2014 | Autumn | 0.959 | 1.601 | 1.236 | 0.125 | 1.250 | 0.142 | 0.025 | 0.052 |
2014 | Winter | 1.361 | 2.429 | 2.073 | 0.337 | 1.974 | 0.259 | 0.054 | 0.112 |
2015 | Spring | 1.234 | 1.875 | 1.419 | 0.191 | 1.450 | 0.154 | 0.028 | 0.056 |
2015 | Summer | 0.718 | 1.654 | 1.317 | 0.355 | 1.292 | 0.223 | 0.031 | 0.063 |
2015 | Autumn | 0.726 | 1.348 | 1.013 | 0.135 | 1.017 | 0.156 | 0.043 | 0.094 |
2015 | Winter | 1.348 | 1.75 | 1.59 | 0.279 | 1.581 | 0.177 | 0.072 | 0.186 |
Year | Season | Min | Max | Median | IQR | Mean | SD | SE | CI |
---|---|---|---|---|---|---|---|---|---|
2013 | Spring | 0.053 | 0.095 | 0.077 | 0.016 | 0.078 | 0.012 | 0.003 | 0.005 |
2013 | Summer | 0.033 | 0.25 | 0.064 | 0.023 | 0.07 | 0.036 | 0.005 | 0.009 |
2013 | Autumn | 0.046 | 0.121 | 0.070 | 0.017 | 0.072 | 0.015 | 0.003 | 0.005 |
2013 | Winter | 0.055 | 0.095 | 0.060 | 0.018 | 0.067 | 0.013 | 0.004 | 0.010 |
2014 | Spring | 0.050 | 0.133 | 0.089 | 0.022 | 0.089 | 0.019 | 0.003 | 0.005 |
2014 | Summer | 0.047 | 0.118 | 0.081 | 0.024 | 0.079 | 0.017 | 0.002 | 0.004 |
2014 | Autumn | 0.056 | 0.126 | 0.084 | 0.011 | 0.088 | 0.013 | 0.002 | 0.005 |
2014 | Winter | 0.058 | 0.133 | 0.092 | 0.037 | 0.091 | 0.021 | 0.004 | 0.009 |
2015 | Spring | 0.042 | 0.115 | 0.073 | 0.023 | 0.073 | 0.019 | 0.003 | 0.007 |
2015 | Summer | 0.046 | 0.222 | 0.077 | 0.022 | 0.083 | 0.027 | 0.004 | 0.007 |
2015 | Autumn | 0.065 | 0.092 | 0.072 | 0.012 | 0.075 | 0.008 | 0.002 | 0.005 |
2015 | Winter | 0.069 | 0.096 | 0.075 | 0.006 | 0.078 | 0.010 | 0.004 | 0.010 |
Year | Season | Min | Max | Median | IQR | Mean | SD | SE | CI |
---|---|---|---|---|---|---|---|---|---|
2013 | Spring | 11.208 | 24.642 | 19.468 | 5.594 | 19.475 | 4.088 | 0.834 | 1.726 |
2013 | Summer | 24.563 | 30.343 | 28.701 | 1.977 | 28.348 | 1.609 | 0.208 | 0.416 |
2013 | Autumn | 11.564 | 27.028 | 21.502 | 7.032 | 20.788 | 5.019 | 0.836 | 1.698 |
2013 | Winter | 3.927 | 9.514 | 5.846 | 4.501 | 6.853 | 2.403 | 0.801 | 1.847 |
2014 | Spring | 12.100 | 25.821 | 20.99 | 6.767 | 20.322 | 4.091 | 0.591 | 1.188 |
2014 | Summer | 25.688 | 28.549 | 27.386 | 0.832 | 27.367 | 0.691 | 0.08 | 0.159 |
2014 | Autumn | 12.874 | 26.943 | 21.812 | 7.086 | 21.447 | 4.271 | 0.767 | 1.567 |
2014 | Winter | 7.19 | 11.001 | 8.403 | 1.759 | 8.637 | 1.168 | 0.244 | 0.505 |
2015 | Spring | 11.17 | 25.049 | 22.13 | 3.92 | 20.856 | 4.131 | 0.742 | 1.515 |
2015 | Summer | 24.69 | 31.491 | 28.798 | 2.92 | 28.475 | 1.953 | 0.273 | 0.549 |
2015 | Autumn | 16.102 | 28.22 | 26.413 | 5.503 | 23.534 | 4.587 | 1.272 | 2.772 |
2015 | Winter | 7.861 | 8.981 | 8.092 | 0.554 | 8.278 | 0.447 | 0.182 | 0.469 |
Year | Season | Min | Max | Median | IQR | Mean | SD | SE | CI |
---|---|---|---|---|---|---|---|---|---|
2013 | Spring | 0.815 | 1.879 | 1.273 | 0.410 | 1.322 | 0.314 | 0.064 | 0.133 |
2013 | Summer | 0.901 | 2.261 | 1.638 | 0.810 | 1.621 | 0.416 | 0.054 | 0.107 |
2013 | Autumn | 0.701 | 1.468 | 1.152 | 0.409 | 1.110 | 0.247 | 0.041 | 0.084 |
2013 | Winter | 0.483 | 1.311 | 0.798 | 0.139 | 0.873 | 0.298 | 0.099 | 0.229 |
2014 | Spring | 0.854 | 1.977 | 1.552 | 0.395 | 1.528 | 0.284 | 0.041 | 0.083 |
2014 | Summer | 0.666 | 1.840 | 1.226 | 0.453 | 1.235 | 0.316 | 0.036 | 0.073 |
2014 | Autumn | 0.643 | 1.487 | 0.957 | 0.368 | 0.999 | 0.254 | 0.046 | 0.093 |
2014 | Winter | 0.461 | 1.254 | 0.938 | 0.241 | 0.857 | 0.248 | 0.052 | 0.107 |
2015 | Spring | 0.870 | 2.033 | 1.462 | 0.572 | 1.418 | 0.355 | 0.064 | 0.130 |
2015 | Summer | 0.734 | 2.138 | 1.235 | 0.482 | 1.293 | 0.352 | 0.049 | 0.099 |
2015 | Autumn | 0.638 | 1.460 | 1.253 | 0.185 | 1.195 | 0.329 | 0.091 | 0.199 |
2015 | Winter | 0.415 | 0.994 | 0.598 | 0.297 | 0.700 | 0.239 | 0.097 | 0.251 |
Term | EDF | Ref.DF | Statistic | P.Value |
---|---|---|---|---|
s(nweek) | 5.293509 | 8.000000 | 21.395662 | 0.000000 |
s(ndate) | 1.757591 | 1.757591 | 3.755324 | 0.091522 |
Seasonal and long-term trends of Planktothrix and Pseudanabaena were evaluated using time series analysis, as illustrated in Table S7, Fig. S6, Table S8 and Fig. S7.
Term | EDF | Ref.DF | Statistic | P.Value |
---|---|---|---|---|
s(nweek) | 6.246786 | 8.000000 | 11.302972 | 0.000000 |
s(ndate) | 1.943873 | 1.943873 | 82.456653 | 0.000000 |
We select water temperature (temp), pre-week photosynthetically active radiation (weekPAR), total nitrogen (TN), nitrate (NO3), total phosphate (TP), ammonia (NH4), wind speed (wind) and maximum daily air temperature (maxtemp) as the potential predictors for abundances of Planktothrix (Table S9) and Pseudanabaena (Table S10). Linear model (\(Y = \sum{\beta_iX_i} + \beta_0 + \epsilon\), \(\epsilon \in N(0, 1), i = 1, 2, ...\)) between these predictors (\(X_i\), i = 1, 2, …) and logarithm transformed abundances (\(Y = log_{10}(1 + N)\)).
Term | Estimate | Std.Error | Statistic | P.Value |
---|---|---|---|---|
(Intercept) | 0.055381 | 0.204114 | 0.271325 | 0.786326 |
temp | 0.020686 | 0.006190 | 3.342053 | 0.000936 |
weekPAR | -0.043151 | 0.062931 | -0.685693 | 0.493431 |
TN | -0.125703 | 0.134448 | -0.934960 | 0.350554 |
NO3 | -0.110292 | 0.143055 | -0.770975 | 0.441323 |
TP | 0.915797 | 1.105912 | 0.828092 | 0.408270 |
NH4 | -0.721135 | 0.911296 | -0.791330 | 0.429371 |
wind | 0.085435 | 0.042653 | 2.003032 | 0.046064 |
maxtemp | -0.003568 | 0.005304 | -0.672707 | 0.501646 |
Term | Estimate | Std.Error | Statistic | P.Value |
---|---|---|---|---|
(Intercept) | -0.249268 | 0.208706 | -1.194353 | 0.233274 |
temp | 0.041253 | 0.006329 | 6.518053 | 2.97e-10 |
weekPAR | -0.119826 | 0.064347 | -1.862196 | 0.063543 |
TN | 0.189667 | 0.137473 | 1.379667 | 0.168707 |
NO3 | -0.068600 | 0.146274 | -0.468984 | 0.639418 |
TP | 0.202906 | 1.130792 | 0.179437 | 0.857715 |
NH4 | -0.737178 | 0.931798 | -0.791136 | 0.429484 |
wind | -0.034087 | 0.043612 | -0.781579 | 0.435072 |
maxtemp | -0.012824 | 0.005423 | -2.364817 | 0.018669 |
We performed Backward Stepwise Regressions to identify the significant variables responsible for the abundances of Planktothrix and Pseudanabaena. The regression started with a model that contains all variables, and then removing the least significant variables one by one, until a pre-specified stopping rule (here we use AIC rule) is reached.
Below is the Backward Stepwise Regressions of linear model for Planktothrix, the water temperature (temp), pre-week PAR (weekPAR), total nitrogen (TN) and wind speed (wind) were considered as effect predictors for Planktothrix.
Term | Estimate | Std.Error | Statistic | P.Value |
---|---|---|---|---|
(Intercept) | 0.029206 | 0.183201 | 0.159421 | 0.873442 |
temp | 0.018787 | 0.003960 | 4.744185 | 3.21e-06 |
weekPAR | -0.066606 | 0.057760 | -1.153142 | 0.249749 |
TN | -0.194775 | 0.073604 | -2.646272 | 0.008558 |
wind | 0.075903 | 0.040487 | 1.874726 | 0.061780 |
Below is the Backward Stepwise Regressions of linear model for Pseudanabaena, the water temperature (temp), pre-week PAR (weekPAR), total nitrogen (TN), ammonia (NH4) and maximum daily air temperature (maxtemp) were considered as effect predictors for Pseudanabaena.
Term | Estimate | Std.Error | Statistic | P.Value |
---|---|---|---|---|
(Intercept) | -0.351 | 0.162542 | -2.159404 | 0.031596 |
temp | 0.043007 | 0.005947 | 7.231744 | 3.84e-12 |
weekPAR | -0.118911 | 0.063542 | -1.871372 | 0.062248 |
TN | 0.142841 | 0.078959 | 1.809052 | 0.071424 |
NH4 | -0.888384 | 0.900174 | -0.986903 | 0.324470 |
maxtemp | -0.013610 | 0.005303 | -2.566502 | 0.010749 |
Backward Stepwise Regression approaches were performed for the two linear models to find out the optimum selections of predictors, as summarize in Table S11 (Planktothrix) and Table S12 (Pseudanabaena), respectively. Water temperature (temp), pre-week PAR (weekPAR), total nitrogen (TN), wind speed (wind) and maximum daily air temperature (maxtemp) were sorted out.
Parameter | VIF |
---|---|
temp | 2.025278 |
weekPAR | 1.449414 |
TN | 1.734340 |
TP | 1.148326 |
NH4 | 1.179282 |
wind | 1.119961 |
According to the Backward Stepwise Regressions, water temperature (temp), pre-week PAR (weekPAR), total nitrogen (TN), total phosphate (TP), ammonia (NH4) and wind speed (wind) were selected as the valid predictors and used for following general additive models (GAMs). Variance inflation factors (VIF) were calculated and validated the rationality (<5) for these predictors , as summarized in Table S13.
Correlation coefficients among these predictors were computed by Pearson Method, as illustrated in Fig. S8. The results were used for the optimization of non-parameter smooth functions (smoother) in following GAMs for Planktothrix and Pseudanabaena. Specifically, high correlation coefficient between water temperature (temp) and pre-week PAR (PAR) suggests they are interacting predictors; similarly, total nitrogen (TN) and ammonia (NH4) are interacting predictors.
Term | edf | ref.df | Statistic | p-value |
---|---|---|---|---|
t2(temp, weekPAR) | 2.999974 | 2.999974 | 8.441657 | 2.12287e-05 |
t2(TN, NH4) | 2.999898 | 2.999898 | 2.800880 | 0.04014 |
s(TP) | 1.000008 | 1.000008 | 0.759490 | 0.38418 |
s(wind) | 1.000000 | 1.000000 | 3.944025 | 0.04794 |
Iterations between water temperature and pre-week PAR (t2(temp, weekPAR)), and between total nitrogen and ammonia (t2(TN, NH4)) were both evaluated by the tensor products (\(f_1(x_1) \otimes f_2(x_2)\)).
The results of “GAM1” suggest water temperature (temp), pre-week PAR (weekPAR), total nitrogen (TN) and ammonia (NH4) are most important predictors for Planktothrix abundance.
Term | edf | ref.df | Statistic | p-value |
---|---|---|---|---|
t2(temp, weekPAR) | 5.733091 | 5.733091 | 9.604014 | 0 |
t2(TN, NH4) | 2.999999 | 2.999999 | 0.964346 | 0.41001 |
s(TP) | 2.236544 | 2.236544 | 2.650483 | 0.1095 |
s(wind) | 4.787511 | 4.787511 | 3.886710 | 0.00265 |
The results of “GAM2” suggest water temperature (temp), pre-week PAR (weekPAR), total phosphrus (TP) and wind speed (wind) are most important predictors for Pseudanabaena abundance.
Term | edf | ref.df | Statistic | p-value |
---|---|---|---|---|
t2(temp, weekPAR) | 2.999993 | 2.999993 | 8.439392 | 1.912541e-05 |
t2(TN, NH4) | 2.999870 | 2.999870 | 4.088651 | 0.00689 |
According to “GAM1”, the predictors of Planktothrix abundances were further optimized to 4 factors, which are water temperature (temp), pre-week PAR (weekPAR), total nitrogen (TN) and ammonia (NH4). The summary of optimized Planktothrix GAM (GAM3) results is shown in Table S16.
Term | edf | ref.df | Statistic | p-value |
---|---|---|---|---|
t2(temp, weekPAR) | 5.870002 | 5.870002 | 9.200651 | 0 |
s(TP) | 2.222784 | 2.222784 | 3.073369 | 0.06404 |
s(wind) | 4.665106 | 4.665106 | 3.782337 | 0.00378 |
According to “GAM2”, the predictors of Pseudanabaena abundances were further optimized to 4 factors, which are water temperature (temp), pre-week PAR (weekPAR), total phosphorus (TP) and wind speed (wind). The summary of optimized Pseudanabaena GAM (GAM4) results is shown in Table S17.
R Language demonstration code
# demo data frame
require(lubridate)
require(mgcv)
<- data.frame(date = ymd("2020-01-01") + 0:365,
modeldf y = rnorm(366))
# seasonal pattern: week number
$x1 <- week(modeldf$date)
modeldf# long-term pattern: decimal number
$x2 <- year(modeldf$date) + yday(modeldf$date) / 366
modeldf# demo gam model
<- gamm(y ~ s(x1, bs = "cc") + s(x2), data = modeldf) m